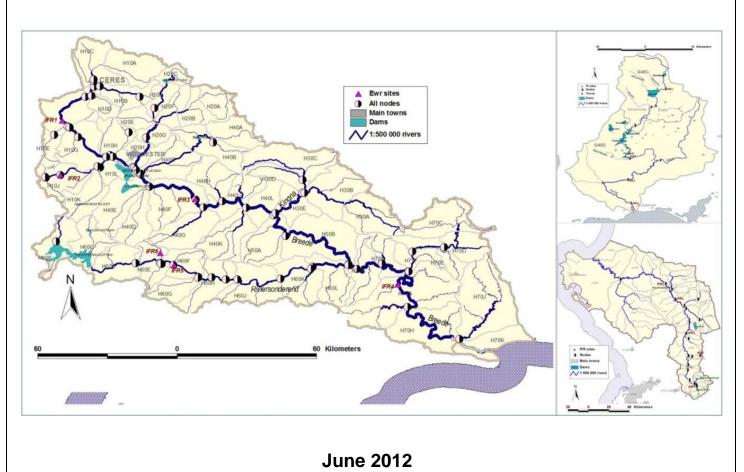
Report No: P WMA 19/G10/00/2413/1

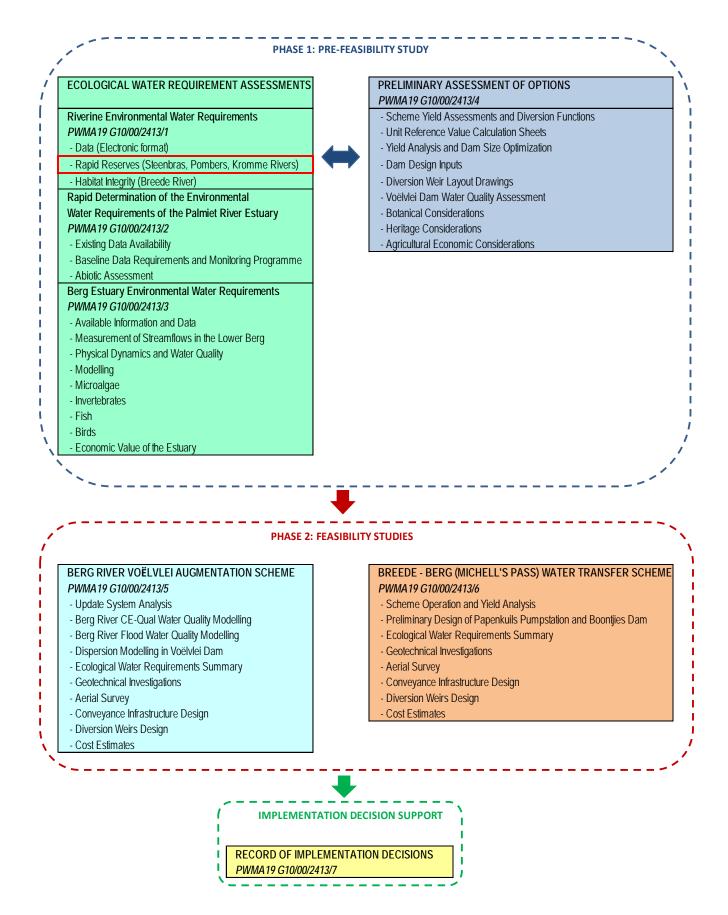

Department of Water Affairs Directorate: Options Analysis

PRE-FEASIBILITY AND FEASIBILITY STUDIES FOR AUGMENTATION OF THE WESTERN CAPE WATER SUPPLY SYSTEM BY MEANS OF FURTHER SURFACE WATER DEVELOPMENTS

REPORT No.1 – VOLUME 1 Riverine Environmental Water Requirements

APPENDIX No.4

Rapid Reserve Assessments (Quantity) for the Steenbras, Pombers and Kromme Rivers


STUDY REPORT LIST

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Riverine Environmental Water Requirements
				Appendix 1: EWR data for the Breede River
			PWMA19	Appendix 2: EWR data for the Palmiet River
		Vol 1	G10/00/2413/1	Appendix 3: EWR data for the Berg River
				Appendix 4: Task 3.1: Rapid Reserve assessments (quantity) for the Steenbras, Pombers and Kromme Rivers
				Appendix 5: Habitat Integrity Report – Breede River
	ECOLOGICAL			Rapid Determination of the Environmental Water Requirements of the Palmiet River Estuary
		Vol 2	PWMA19 G10/00/2413/2	Appendix A: Summary of data available for the RDM investigations undertaken during 2007 and 2008
1			G 10/00/24 13/2 .	Appendix B: Summary of baseline data requirements and the long- term monitoring programme
	WATER REQUIREMENT ASSESSMENTS			Appendix C: Abiotic Specialist Report
	A33E33MEN13	Vol 3		Berg Estuary Environmental Water Requirements
				Appendix A: Available information and data
				Appendix B: Measurement of streamflows in the Lower Berg downstream of Misverstand Dam
				Appendix C: Specialist Report – Physical dynamics and water quality
			PWMA19	Appendix D: Specialist Report – Modelling
			G10/00/2413/3	Appendix E: Specialist Report – Microalgae
				Appendix F: Specialist Report – Invertebrates
				Appendix G: Specialist Report – Fish
				Appendix H: Specialist Report – Birds
				Appendix I: Specialist Report – The economic value of the Berg River Estuary
				Appendix 1: Scheme Yield Assessments and Diversion Functions
				Appendix 2: Unit Reference Value Calculation Sheets
				Appendix 3: Yield Analysis and Dam Size Optimization
	PRELIMINARY			Appendix 4: Dam Design Inputs
2	ASSESSMENT		PWMA19 G10/00/2413/4	Appendix 5: Diversion Weir Layout Drawings
				Appendix 6: Voëlvlei Dam Water Quality Assessment
				Appendix 7: Botanical Considerations
				Appendix 8: Heritage Considerations
				Appendix 9: Agricultural Economic Considerations

STUDY REPORT LIST (cntd)

REPORT No	REPORT TITLE	VOLUME No.	DWA REPORT No.	VOLUME TITLE
				Berg River-Voëlvlei Augmentation Scheme
				Appendix 1: Updating of the Western Cape Water Supply System Analysis for the Berg River-Voëlvlei Augmentation Scheme
		Vol 1	PWMA19	Appendix 2: Configuration, Calibration and Application of the CE- QUAL-W2 model to Voëlvlei Dam for the Berg River-Voëlvlei Augmentation Scheme
		VOLT	G10/00/2413/5	Appendix 3: Monitoring Water Quality During Flood Events in the Middle Berg River (Winter 2011), for the Berg River-Voëlvlei Augmentation Scheme
				Appendix 4: Dispersion Modelling in Voëlvlei Dam from Berg River Water Transfers for the Berg River-Voëlvlei Augmentation Scheme
				Appendix 7 - 12: See list under Volume 2 below
				Breede-Berg (Michell's Pass) Water Transfer Scheme
	3 FEASIBILITY STUDIES	Vol 2	PWMA19 G10/00/2413/6	Appendix 5: Scheme Operation and Yield Analyses with Ecological Flow Requirements for the Breede-Berg (Michell's Pass) Water Transfer Scheme
3				Appendix 6: Preliminary Design of Papenkuils Pump Station Upgrade and Pre-Feasibility Design of the Boontjies Dam, for the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 7: Ecological Water Requirements Assessment Summary for the Berg River-Voëlvlei Augmentation Scheme , and the Breede Berg (Michell's Pass) Water Transfer Scheme
				Appendix 8: Geotechnical Investigations for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 9: LiDAR Aerial Survey, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 10: Conveyance Infrastructure Design Report, for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 11: Diversion Weirs Design for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
				Appendix 12: Cost Estimates for the Berg River-Voëlvlei Augmentation Scheme, and the Breede-Berg (Michell's Pass) Water Transfer Scheme
4	RECORD OF IMPLEMENTATI DECISIONS	ON	PWMA19 G10/00/2413/7	

STUDY REPORT MATRIX DIAGRAM

TABLE OF CONTENTS

1	INTRODUCTION	1
1.1	Study team	1
2	STUDY AREA AND EWR SITES	1
2.1	Steenbras River	1
2.2	Pombers and Kromme Rivers	2
2.3	EWR sites	2
3	APPROACH ADOPTED	3
4	ECOCLASSIFICATION	3
4.1	Steenbras River	4
	4.1.1 River reach assessed	4
	4.1.2 Overall Present Ecological Status	
	4.1.3 Stable	
	4.1.4 Hydrology	
	4.1.5 Geomorphology4.1.6 Riparian vegetation	
	4.1.7 Invertebrates	
4.2		
	4.2.1 River reach assessed	8
	4.2.2 Overall Present Ecological Status	9
4.3		
	4.3.1 River reach assessed	
	4.3.2 Overall Present Ecological Status	
4.4		
5	EWR RESULTS	
5.1		16
	5.1.1 Motivation for the Steenbras EWR and suggestions for improved management of the river ecosystem	10
5.2	•	
0.2	5.2.1 Motivation for the Pombers EWR and suggestions for improved management of the rive	
	ecosystem	
5.3		
	5.3.1 Motivation for the Kromme EWR and suggestions for improved management of the rive	er
	ecosystem	
5.4		
6	REFERENCES	
7	ADDENDA	26

LIST OF TABLES

	Page No.
Table 4.1	Present Ecological Status (PES), Ecological Importance and Sensitivity (EIS) and
	Recommended Ecological Category (REC) for the Steenbras River4
Table 4.2	Simulated naturalised and present day monthly hydrological data for the Steenbras River6
Table 4.3	Results from the GAI Level IV assessment for the Steenbras River
Table 4.4	Macroinvertebrates sampled at Steenbras River8
Table 4.5	Present Ecological Status (PES), Ecological Importance and Sensitivity (EIS) and
	Recommended Ecological Category (REC) for the Pombers River
Table 4.6	Simulated naturalised and present day monthly hydrological data for the Pombers River10
Table 4.7	Results from the GAI Level IV assessment for the Pombers River
Table 4.8	The downstream (sub-reach 2) of the Pombers River assessed in this study showing
	incision of the channel and some infilling from agricultural fields. The inset shows the
	mobile cobbles on the bed11
Table 4.9	Present Ecological Category (PES), Ecological Importance and Sensitivity (EIS) and
	Recommended Ecological Category (REC) for the Kromme River
Table 4.10	Simulated naturalised and present day monthly hydrological data for the Kromme River 14
Table 4.11	Results from the GAI Level IV assessment for the Kromme River14
Table 4.12	Macroinvertebrates sampled at Kromme River15
Table 4.13	Ecological Categories (ECs) of the different components of the river at each EWR site15
Table 5.1	Summary hydrology at proposed development sites16
Table 5.2	Summary hydrology table for B/C category EWRs for the Steenbras River EWR Site17
Table 5.3	Rule tables for B/C category EWRs for the Steenbras River EWR Site17
Table 5.4	Flood requirements (Steenbras River)18
Table 5.5	Summary hydrology table for C -category EWRs for the Pombers River EWR Site19
Table 5.6	Rule tables for C-category EWRs for the Pombers River EWR Site
Table 5.7	Flood requirements for the Pombers River21
Table 5.8	Summary hydrology table for D-category EWR for the Kromme River EWR Site22
Table 5.9	Rule tables for D -category EWRs for the Kromme River EWR Site
Table 5.10	Flood requirements for the Kromme River23
Table 5.11	EWR summary results for the Steenbras, Pombers and Kromme Rivers

LIST OF FIGURES

	Page No.
Figure 2.1	Google image showing Steenbras EWR Site (S: 34.19379°, E: 18.82467°) situated near
	the mouth downstream of the Steenbras dams2
Figure 2.2	Google image showing EWR Sites for the Pombers (S: 33.62554°, E: 19.08985°) and
	Kromme Rivers (S: 33.62577°, E: 19.08166°)
Figure 4.1	A pool in the Steenbras River c. 40 m downstream of the lower Steenbras Dam, showing
	the poor water quality5
Figure 4.2	Riparian vegetation at the Steenbras River EWR Site7
Figure 4.3	The two sub-reaches of the Pombers River assessed in this study9
Figure 4.4	Riparian vegetation on the Pombers River (sub-reach 2)12
Figure 4.5	The reach of the Kromme River assessed in this study showing incision of the channel.
	The inset shows the embedded cobbles on the bed, which have been smothered by the

		, ,		
f	ines introduced from the eroding banks		13	3

GLOSSARY AND ABBREVIATIONS

%MAR	Percentage Mean Annual Run-off
a ⁻¹	Per annum
AEC	Alternative Ecological Category
ASPT	Average Score Per Taxon
DWA	Department of Water Affairs
EIS	Ecological Importance and Sensitivity
EWR	Ecological Water Requirement
GAI	Geomorphology Driver Assessment Index
m ³ s⁻¹	Cubic meters per second
MAR	Mean Annual Run-off
masl	meters above sea level
MCM	Million cubic meters
MIRAI	Macroinvertebrate Response Assessment Index
nMAR	Natural Mean Annual Run-off
nMean Q	Natural mean discharge
PES	Present Ecological Status
REC	Recommended Ecological Category
SASS5	South African Scoring System version 5
VEGRAI	Riparian Vegetation Response Assessment Index

1 INTRODUCTION

This study is part of the Western Cape Feasibility and Pre-feasibility Studies for the options to augment the Western Cape Water Supply Scheme being undertaken by Western Cape Water Consultants on behalf of the Department of Water Affairs (DWA). These options include schemes on the Steenbras, Pombers and Kromme Rivers.

Rapid II level Ecological Water Requirement (EWR) determinations were recommended for the three rivers in order to provide input to the catchment-wide assessment of EWRs (as per the technical requirements of the Water Resource Classification System; Dollar *et al.* 2006) that will be done as part of the Western Cape Feasibility and Pre-feasibility Studies.

These Rapid II assessments comprise one task, Task 1.3, of a suite of Reserve-related tasks in the Western Cape Feasibility and Pre-feasibility Studies and were approved under Variation Order 1.

Task 1.3 comprised the following sub-tasks:

- Sub-Task 1.3.1 Literature Review.
- Sub-Task 1.3.2 Field visit. Team members visited the Steenbras, Pombers and Kromme Rivers on 6th July 2009 to familiarize themselves with the rivers, and to assess the Present Ecological Status (PES) of the rivers.

The data collected in the field were used to:

- complete the Ecoclassification datasheets for each discipline;
- compare the discharge with those recommended by the Desktop Model for the same month (July).
- Sub-Task 1.3.3 Generation of naturalised hydrology.
- Sub-Task 1.3.4 Specialist meeting Ecological Water Requirements (EWRs) determination. A one-day workshop was held at Southern Waters Offices on the 9th July 2009 to determine the EWRs.

Sub-Task 1.3.5 Report writing. The results are presented in this report.

1.1 Study team

The study team comprised:

- Rembu Magoba: Task leader and macroinvertebrate specialist
- Mark Rountree: Geomorphologist
- Karl Reinecke: Riparian vegetation
- Cate Brown: Reserve team leader.
- Anton Sparks: Hydrology.

2 STUDY AREA AND EWR SITES

2.1 Steenbras River

Steenbras River is a perennial river that rises in the Hottentots Holland Mountains near Cape Town, and enters the sea near Gordon's Bay (Figure 2.1). The river is impounded by the upper and lower Steenbras dams, which form part of the Western Cape Water Supply System. The Lower Steenbras Dam was constructed in 1921. It was raised for the first time in 1928 and for the second time in 1954. The Upper Steenbras Dam was constructed in 1977. No EWRs are currently released from the dams, and flows in the downstream river have been severely reduced for over half a century.

There is a proposal to raise the wall of Lower Steenbras Dam for a third time, by 24 m to the same full supply level as that of the Upper Steenbras Dam (370 masl), thereby creating a single Greater Steenbras Dam.

2.2 Pombers and Kromme Rivers

The Pombers River has its source in the Hawequas Mountain Catchment Area and is a tributary of the Kromme River, which itself is a tributary of the Berg River. The Kromme River joins the Berg River just west of the town of Wellington. Both are naturally seasonal rivers, although the Pombers River receives water from the Wit River during the summer via Gawie se Water. Gawie se Water was constructed in 1900 and has been in use ever since. It currently diverts 5 MCM a⁻¹ into the Pombers River, and thus into the Kromme River downstream of its confluence with the Pombers River (Figure 2.2).

There is a proposal to replace the Gawie-se-Water diversion with a diversion of 10 MCM a⁻¹ of winter water from the Wit River via the Pombers River to new dam on Doolhof Farm. An alternative proposal is to divert the water into a dam on Oaklands Farm, upstream of Doolhof Farm (Figure 2.2).

2.3 EWR sites

The location of the EWR sites selected on the Steenbras, Pombers and Kromme rivers are shown in Figure 2.1 and Figure 2.2, respectively. These are discussed in more detail in Section 4.

Figure 2.1 Google image showing Steenbras EWR Site (S: 34.19379°, E: 18.82467°) situated near the mouth downstream of the Steenbras dams.

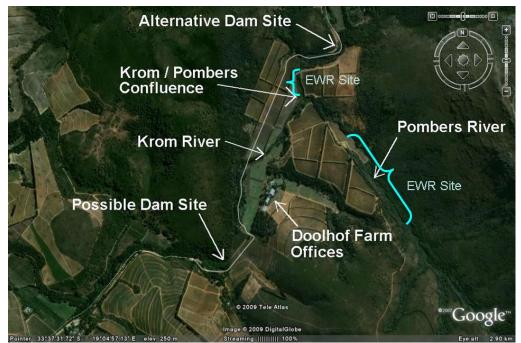


Figure 2.2 Google image showing EWR Sites for the Pombers (S: 33.62554°, E: 19.08985°) and Kromme Rivers (S: 33.62577°, E: 19.08166°)

3 APPROACH ADOPTED

The river Rapid II EWR determination procedure was followed (DWAF 1999). In summary, the procedure is as follows:

- Site visit and EWR assessment done by a team of 2-3 people.
- Consideration of readily-available information on the river, to set PES.
- Flow measurement during the site visit so that at least one point can be compared with the values generated by the Desktop.
- No hydraulic information.

The Desktop Model (Hughes and Hannart 2003) was used to determine EWRs for the Steenbras, Pombers and Kromme Rivers. The Desktop Model is a rule-based model calibrated using trends emerging from the previous Comprehensive Reserve determinations for rivers with similar hydrological characteristics (Hughes and Hannart 2003). All summary hydrology and rule tables were produced using the Desktop Version 2¹ and IFR Edit.

4 ECOCLASSIFICATION

Ecoclassification assessments for the Steenbras, Pombers and Kromme Rivers were done using:

Geomorphology:	GAI (Level IV) (Rowntree and Du Preez, in prep).
Vegetation:	VEGRAI (Kleynhans <i>et al.</i> 2008).
Macroinvertebrates:	MIRAI (Thirion 2008).

Present Ecological Status (PES), Ecological Importance and Sensitivity (EIS), Recommended Ecological Category (REC) were determined for each site.

¹ Refer to Hughes and Hannart (2003) for the details of the model and its use.

PES is the current ecological condition (i.e., the extent to which it differs from its Reference or natural condition), whereas the REC considers the regional and national importance (EIS) of the system in a regional and national context, as well as other factors, such as protected-area status, and restorability (DWAF 2004).

Importance is assessed on a local and a national scale. Sensitivity refers to the system's ability to resist disturbance and its capability to recover from disturbance once it has occurred. The combined EIS is used as a guideline for deciding on the REC (DWAF 1999) in that if the EIS is high then the REC may be higher than PES. The REC can be the same or higher than PES, but never lower (DWAF 1999).

The ecological categories used to characterise the different components at each site are (after Kleynhans 1999):

- A = Unmodified, natural.
- B = Largely natural with few modifications.
- C = Moderately modified. A loss and change of natural habitat and biota have occurred but the basic ecosystem functions are still predominantly unchanged.
- D = Largely modified. A large loss of natural habitat, biota and basic ecosystem functions has occurred.
- E = The loss of natural habitat, biota and basic ecosystem functions are extensive.
- F = Critically modified. Modifications have reached a critical level and the system has been modified completely with an almost complete loss of natural habitat.

4.1 Steenbras River

4.1.1 River reach assessed

The Steenbras EWR site (Figure 2.1) was used to represent the river between the lower Steenbras Dam and the estuary. In addition to the detailed PES assessment at the EWR site, the study team visited the river immediately downstream of the dam to estimate PES.

4.1.2 Overall Present Ecological Status

The PES of the Steenbras River was scored as 78.6%, which puts it into a B/C ecological category. The river is largely natural in terms of the species present but these occur at a reduced extent. The marginal zone was reduced in width and would have covered a greater portion of the channel bed in the absence of flow regulation. There were also more terrestrial species in the river corridor than expected under natural conditions. If there are no major disturbances in the catchment, the condition of the vegetation will probably remain stable. However, it is likely that the reduced protection offered to the river system means that both the resistance and resilience of the system has been compromised and that it is more vulnerable to perturbations such as fire or flooding than it would have been in its natural state.

The PES, EIS (DWAF 1999) and REC for the Steenbras River are summarised in Table 4.1.

Table 4.1	Present	Ecological	Status	(PES),	Ecological	Importance	and	Sensitivity	(EIS)	and
	Recomm	ended Ecolo	ogical Ca	ategory (REC) for the	Steenbras R	iver			

Component of the riverine	F	PES	EIS	REC*	
ecosystem	Category	Trajectory			
Hydrology	E/F	Stable			
Geomorphology	В	Stable			
Riparian vegetation	B/C	Stable	Moderate/high.	B/C	
Macroinvertebrates	A	Stable			
PRESENT ECOSTATUS	B/C	4.1.3 Stable			

The PES of the Steenbras River increased from immediately downstream of the lower Steenbras Dam, where water quality problems were noticed but not quantified (Figure 4.1), to the EWR site. The average ecological category for the reach was a B/C.

The major factors contributing to the PES of the Steenbras River were:

- low water levels associated with the presence of the Steenbras dams;
- geomorphology that is highly resistant to flow changes;
- poor water quality immediately downstream of the dam;
- largely natural riparian and instream vegetation, which is reduced in extent;
- a largely natural macroinvertebrate community.

Additional detail is provided below.

Figure 4.1 A pool in the Steenbras River *c*. 40 m downstream of the lower Steenbras Dam, showing the poor water quality.

4.1.4 Hydrology

The discharge at Steenbras EWR Site at the time of the site visit (i.e. 06.07.2009) was 0.076 $m^3 s^{-1}$ (i.e., considerably less than the average July discharge of 4.18 $m^3 s^{-1}$ expected under natural conditions and 0.15 $m^3 s^{-1}$ predicted for present day conditions) (Table 4.2).

4.1.5 Geomorphology

The predominance of bedrock on the riverbed and banks means that the geomorphology is highly resistant to flow-driven change. Thus, despite the changes in hydrology, the Geomorphology PES is a B/C Category (Table 4.3). The reduction from natural is mostly related to the influence of the dams on sediment movement, both in terms of system connectivity (sediment movement downstream) and transport capacity.

 Table 4.2
 Simulated naturalised and present day monthly hydrological data for the Steenbras River

 Derived: 1028_2004
 2004

Period: 1928 - 200	4					
	Mea	n (MCM)			PD Mean Q (m ³ s ⁻	
Month	Natural	Present Day	% Natural	nMean Q (m ³ s ⁻¹)	¹)	
	MAR	MAR				
October	4.0	0.1	2.5	1.49	0.04	
November	2.1	0.0	0.0	0.81	0.00	
December	1.5	0.0	0.0	0.56	0.00	
January	1.0	0.0	0.0	0.37	0.00	
February	0.8	0.0	0.0	0.33	0.00	
March	0.9	0.0	0.0	0.34	0.00	
April	2.0	0.0	0.0	0.77	0.00	
Мау	4.4	0.0	0.0	1.64	0.00	
June	8.5	0.2	2.4	3.28	0.08	
July	11.2	0.4	3.6	4.18	0.15	
August	11.7	0.5	4.3	4.37	0.19	
September	6.9	0.2	2.9	2.66	0.08	

Table 4.3 Results from the GAI Level IV assessment for the Steenbras River

COMPONENTS	RANK	RELATIVE WEIGHTING (%)	RATING	WEIGHT	Weighed score	
System Connectivity	3.00	60.00	1.80	0.17	0.31	
Sediment supply	2.00	70.00	0.72	0.20	0.14	
Transport capacity (hydrology)	1.00	100.00	1.00	0.29	0.29	
Perimeter resistance	4.00	50.00	0.61	0.14	0.09	
Morphological change	3.00	70.00	0.70	0.20	0.14	
TOTALS		350.00		1.00	0.96	
System Driver status:					0.96	
Driver status:(%): >89=A; 80-89=B; 60-79=C; 40- 59=D; 20-39=E; <20=F						
HABITAT DRIVER CATEGORY						

4.1.6 Riparian vegetation

The reach of the Steenbras River represented by the EWR site was historically dominated by Palmiet vegetation (Figure 4.2). Palmiet is an ecosystem engineer – it binds the sediment on the floor (valley bottoms and banks) of river channels. The base flows in the system have been severely curtailed by the upstream Steenbras Dam, since no lowflow releases are made from this structure, and it only overtops when high rainfall events occur when the reservoir is already full. The reduction in lowflows has resulted in reduced areas of Palmiet (the marginal vegetation) and allowed for more upland vegetation to encroach into the riparian and marginal areas along the channel. The encroaching vegetation may also shade the Palmiet, further reducing its vigor.

Figure 4.2 Riparian vegetation at the Steenbras River EWR Site

There was also some evidence of an accumulation of fines in the channel probably linked to the reduced flooding, but this probably ameliorated by: 1) trapping of sediments in the dam, and 2) flows from the two small tributaries downstream of the dam.

The riparian vegetation of the Steenbras River has a diversity of species but a vastly reduced aerial cover and abundance. *Prionium serratum* (palmiet) was the most prominent marginal zone species and occurred with the graminoids *Pennisetum macrourum, Juncus effusus* and *J. Iomatophyllus;* the shrub *Erica caffra* (water heath); the restios *Calopsis paniculata* and *Elegia capensis;* and the forbs *Blechnum capense* and *Todea barbara. Metrosideros angustifolia* (Cape myrtle) was the most prominent nonmarginal zone species and occurred with *Brabejum stellatifolium* (wild almond), *Brachylaena neriifolia* (water white alder), *Morella serrata* (lance-leaf waxberry), *Berzelia lanuginosa* (vleiknopbos) and *Diospyros glabra* (Fynbos star-apple). There was encroachment of some terrestrial Fynbos species, prominently *Cliffortia* spp., *Rhus gluaca* (blue kuni-bush) and *Pelargonium cucullatum* (wildemalva).

4.1.7 Invertebrates

South African Scoring System version 5 (SASS5) protocols were followed for sampling aquatic macroinvertebrates (Dickens and Graham, 2002). The overall macroinvertebrate ecological category (EC) at the EWR site was an A. The Ephemeroptera, Trichoptera and Odonata group, the presence of which is indicative of good conditions, was well represented at the site. The sampled taxa were abundant, with an exception of Oligochaeta; Trichorythidae and Psephenidae, which were low in numbers (Table 4.4). The macroinvertebrate ecological category was, however, expected to decline significantly in summer months when flows are very low, water temperatures are higher (Saltveit *et al.* 1994), and there is increased utilisation of the river by the public.

Taxon	Sensitivity score	Estimated abundance
ANNELIDA		
Oligochaeta (Earthworms)	1	A
EPHEMEROPTERA (Mayflies)		
Baetidae > 2 species	12	В
Tricorythidae	9	A
ODONATA (Dragonflies & Damselflies)		
Coenagrionidae	4	В
Gomphidae	6	В
Libellulidae	4	В
HEMIPTERA (Bugs)		
Corixidae*	3	В
TRICHOPTERA (Caddisflies)		
Hydropsychidae > 2 species	12	В
Barbarochthonidae	13	В
COLEOPTERA (Beetles)		•
Psephenidae	10	A
SASS score		74
No. of taxa	10	
Average Score Per Taxon (ASPT)	7.4	
Estimated abundance: 1=1; A=2-10; B=10	-100. * Air breathers	•

 Table 4.4
 Macroinvertebrates sampled at Steenbras River

4.2 **Pombers River**

4.2.1 River reach assessed

The Pombers River EWR site (Figure 2.1) was used to represent the river from about 300 m upstream of the agricultural activities associated with Doolhof Farm to the confluence with the Kromme River. The study team also visited the river at Gawie se Water on Bainskloof Pass.

The EWR reach was divided into two sub-reaches (1 and 2), based on the differences in agricultural activities on the banks (Figure 4.3).

Figure 4.3 The two sub-reaches of the Pombers River assessed in this study

4.2.2 Overall Present Ecological Status

The overall PES of the Pombers River as represented by the EWR site was a D category. The upper sub-reach (sub-reach 1) was in a C category, while the lower sub-reach (sub-reach 2) was a D category (Figure 4.3; Table 4.5The difference was a result of agricultural activity on the banks.

Both sub-reaches were characterised by incised active channels; with sub-reach 2 (Figure 4.3) also impacted through infilling to create agricultural lands and introduced spoils in the active channel. Cobbles and gravels within the active channel were mobile and non-embedded in most places. There was extensive loss/removal of indigenous riparian flora. Some marginal vegetation was present but this was dominated by disturbance-triggered alien graminoids. There were some indigenous herbaceous species in the marginal zone but there were no indigenous woody species present in either the marginal and non-marginal zones. There were signs of recent clearing of *Acacia mearnsii* in the upper part of sub-reach 2, but the upper parts of sub-reach 1 (Figure 4.3) were still heavily infested. Nevertheless, it is likely that this was intermingled with indigenous species and thus the ecological condition was probably slightly better in sub-reach 2 than in sub-reach 2 where many of the natural features of the river had been destroyed.

The PES, EIS and REC for the Pombers River are summarised in Table 4.5.

 Table 4.5
 Present Ecological Status (PES), Ecological Importance and Sensitivity (EIS) and Recommended Ecological Category (REC) for the Pombers River

Component of the riverine	Р	ES	EIS	REC*
ecosystem	Category Trajectory		LIS	NLC
Hydrology	E/F	Stable		
Geomorphology	B Negative			
Riparian vegetation	E Negative		Moderate	С
Macroinvertebrates	B Stable			
PRESENT ECOSTATUS	D	Negative		

The major factors contributing to the PES of the Pombers River were:

- incision of the river channel (flow related);
- bank erosion;
- infilling to create agricultural lands;
- invasion by alien plants;
- largely natural macroinvertebrates community.

Additional detail is provided below.

Hydrology

The present day flows in the Pombers River are considerably higher than they would have been naturally (Table 4.6).

Geomorphology

The lower sub-reach (sub-reach 2) had a GAI EC of a D (Table 4.7); whilst the reach upstream (sub-reach 1 in Figure 4.3) was estimated as a C. The elevated baseflows associated with the Gawie-se-Water diversion have incised the active channel (Table 4.8) and destabilized the banks, although poor management of the riparian zone has exacerbated the effects. So much so that re-establishment of indigenous riparian vegetation in this river would require extensive channel re-modification.

Table 4.6Simulated naturalised and present day monthly hydrological data for the Pombers
River

Period: 1928 - 2004					
	Mear	n (MCM)		nMean Q	PD Mean Q
Month	Month Natural Present Day % Natural MAR MAR		(m ³ s ⁻¹)	(m ³ s ⁻¹)	
October	0.1	0.5	500	0.04	0.19
November	0.1	0.5	500	0.04	0.19
December	0.0	0.4	-	0.00	0.15
January	0.0	0.4	-	0.00	0.15
February	0.0	0.4	-	0.00	0.17
March	0.0	0.4	-	0.00	0.15
April	0.0	0.5	-	0.00	0.19
May	0.1	0.5	500	0.04	0.19
June	0.2	0.6	300	0.08	0.23
July	0.3	0.7	233	0.11	0.26
August	0.3	0.8	267	0.11	0.30
September	0.2	0.6	300	0.08	0.23

Table 4.7 Results from the GAI Level IV assessment for the Pombers River

COMPONENTS	RANK	RELATIVE WEIGHTING (%)	RATING	WEIGHT	Weighed score
System Connectivity	3.00	80.00	3.04	0.21	0.64
Sediment supply	2.00	90.00	2.37	0.24	0.56
Transport capacity (hydrology)	1.00	100.00	2.29	0.26	0.60
Perimeter resistance	4.00	60.00	1.30	0.16	0.21
Morphological change	5.00	50.00	5.01	0.13	0.66
TOTALS		380.00		1.00	2.67
System Driver status:					2.67
Driver status:(%): >89=A; 80-89=B; 60-79=C; 40- 59=D; 20-39=E; <20=F					46.63
HABITAT DRIVER CATEGORY				D	

Table 4.8The downstream (sub-reach 2) of the Pombers River assessed in this study
showing incision of the channel and some infilling from agricultural fields. The
inset shows the mobile cobbles on the bed.

Riparian vegetation

The area upstream of the site (sub-reach 1) was highly infested with *Acacia mearnsii*. The flora in subreach 2 (Figure 4.4) was typical of recently cleared areas with predominantly disturbance-triggered alien graminoids and shrubs. The graminoids *Avena* spp., *Bromus* spp., *Erharta* spp., *Pentashistis* spp., *Briza* spp., *Cynodon dactylon* and *Paspalum urvillei* were prominent in the marginal zone along with *Phytolacca*

americana (American pokeweed) and *Rubus fruticosus* (blackberry). There were a number of indigenous marginal zones species including the sedges *Juncus Iomatophyllus* and *J. capensis* and the graminoids *Ehrharta ramosa* and *E., setacea*. The non-marginal zone was disturbed and dominated by the same graminoids, and *Pennisetum clandestinum* (kikuyu), *Conyza* spp., *Solanum nigrum* (European black nightshade), *Rubus fruticosus* and *Acacia mearnsii* seedlings.

Macroinvertebrates

The macroinvertebrates were not sampled in the Pombers River EWR site, but based on the results from the Kromme River EWR site (Table 4.9) and an assessment of available habitats (Brooks *et al.* 2005) in the Pombers (sub-reach 2), they are expected to be in a B category, i.e., good.

Figure 4.4 Riparian vegetation on the Pombers River (sub-reach 2)

4.3 Kromme (Krom) River

4.3.1 River reach assessed

The EWR site on the Kromme River was *c*. 250 m below the confluence with the Pombers River on the Doolhof Farm (Figure 2.2). The site has been subjected to the same elevated baseflows as the Pombers site, and was characterised by a deeply-incised active channel; eroding banks; encroachment and infilling from agriculture; and introduced spoils. Cobbles and gravels within the active channel were embedded or smothered by fines sediments (Figure 4.5).

4.3.2 Overall Present Ecological Status

The overall PES of the Kromme River was a D/E category (Table 4.9). The channel was deeply incised and heavily invaded with *Populus* X *canesccens* (grey poplar), *A. mearnsii, Arundo donax* (Spanish reed) and *Qeurcus robur* (English oak), many herbaceous garden escapees and some citrus trees. There were no marginal zone species present, partly due to shading by the closed alien canopy. There were some *llex mitis* (Cape Holly) individuals scattered through the marginal zone, these being the only remnants of the indigenous riparian flora.

Figure 4.5 The reach of the Kromme River assessed in this study showing incision of the channel. The inset shows the embedded cobbles on the bed, which have been smothered by the fines introduced from the eroding banks.

Table 4.9 Present Ecological Category (PES), Ecological Importance and Sensitivity (EIS) and Recommended Ecological Category (REC) for the Kromme River

Component of the riverine	PES		EIS	REC*
ecosystem	Category Trajectory		EIS	REC
Hydrology	E/F	Negative		
Geomorphology	D/E Negative			
Riparian vegetation	F Negative		Moderate	D
Macroinvertebrates	B/C Negative			
PRESENT ECOSTATUS	D/E	Negative		

The major factors contributing to the Present Ecological Category of the Kromme River were:

- incision of the river channel (flow related);
- bank erosion;
- infilling to create agricultural lands;
- invasion by alien plant species;
- largely natural macroinvertebrates community.

Additional detail is provided below.

Hydrology

The discharge at Kromme River EWR Site at the time of the site visit (i.e. 06.07.2009) was 0.42 m³s⁻¹ (i.e., similar to the average July discharge of 0.41 m³s⁻¹ expected under present day conditions but almost double the 0.26 m³s⁻¹ expected under natural conditions) (Table 4.10).

Table 4.10	Simulated naturalised and present day monthly hydrological data for the Kromme
	River

Period: 1928 – 2004						
	Mean (MCM)				PD Mean Q	
Month	Natural MAR	Present Day MAR	% Natural	nMean Q (m ³ s ⁻¹)	$(m^3 s^{-1})$	
October	0.3	0.7	233.3	0.11	0.26	
November	0.2	0.6	300.0	0.08	0.23	
December	0.1	0.5	500.0	0.04	0.19	
January	0.0	0.4	-	0.00	0.15	
February	0.0	0.4	-	0.00	0.17	
March	0.0	0.4	-	0.00	0.15	
April	0.1	0.4	400.0	0.04	0.15	
May	0.3	0.5	166.7	0.11	0.19	
June	0.5	1.0	200.0	0.19	0.39	
July	0.7	1.1	157.1	0.26	0.41	
August	0.8	1.2	150.0	0.30	0.45	
September	0.5	0.9	180.0	0.19	0.35	

Geomorphology

The geomorphological PES at Kromme River EWR site was a D/E category (Table 4.11). The deeply incised channel prevented most floods from overtopping on to the old floodplain areas; and the eroding banks had completely changed the bed sediment characteristics.

Table 4.11 Results from the GAI Level IV assessment for the Kromme River

COMPONENTS	RANK	RELATIVE WEIGHTING (%)	RATING	WEIGHT	Weighed score
System Connectivity	3.00	80.00	3.61	0.21	0.76
Sediment supply	2.00	90.00	2.71	0.24	0.64
Transport capacity (hydrology)	1.00	100.00	2.29	0.26	0.60
Perimeter resistance	4.00	60.00	2.26	0.16	0.36
Morphological change	5.00	50.00	5.48	0.13	0.72
TOTALS		380.00		1.00	3.08
System Driver status:					3.08
Driver status:(%): >89=A; 80-89=B; 60-79=C; 40- 59=D; 20-39=E; <20=F					38.37
HABITAT DRIVER CATEGORY					Е

Riparian vegetation

The Kromme VEGRAI score is 10.0, an indication of critically modified system condition and hence ecological category F. There was almost a complete loss of indigenous riparian flora except for some isolated and stunted *llex mitis* (Cape holly) trees. There were no marginal zone species present. Downstream of the EWR site, and the proposed Doolhof Dam, the riparian zone was infested with various woody and non-woody alien species.

Macroinvertebrates

The overall macroinvertebrate ecological category (EC) was a B/C. All the taxa were in low abundances, with some such as Crustacea, Plecoptera and Megaloptera represented by only a single individual (Table 4.12).

Taxon	Sensitivity score	Estimated abundance
CRUSTACEA		
Potamonautidae*	3	1
PLECOPTERA (Stoneflies)		
Notonemouridae	14	1
EPHEMEROPTERA (Mayflies)		
Baetidae 2 species	6	А
ODONATA (Dragonflies & Damselflies)		
Gomphidae	6	А
Libellulidae	4	A
HEMIPTERA (Bugs)		
Naucoridae*	7	A
Notonectidae*	3	A
MEGALOPTERA (Dobsonflies)		
Corydalidae	8	1
TRICHOPTERA (Caddisflies)		
Barbarochthonidae	13	A
DIPTERA (Flies)		
Simulidae	5	A
SASS score		69
No. of taxa	10	
Average Score Per Taxon (ASPT)	6.9	
Estimated abundance: 1=1; A=2-10; B=10-100	* Air breathers	

 Table 4.12
 Macroinvertebrates sampled at Kromme River.

4.4 Summary of Ecological Conditions

The estimated ecological conditions of the different components of the rivers at each EWR site are provided in Table 4.13.

Table 4.13	Ecological Categories (ECs) of the different components of the river at each EWR
	site

River	Hydrology	Geomorphology /Floodplain (GAI)	Riparian vegetation (VEGRAI)	Macroinvertebrates (MIRAI)	Ove	rall	Recommended EC for Ecological Reserve	Alternative EC
Steenbras River	E/F	B/C	B/C	A	B/0	0	B/C	None
Pombers River (Sub-reach 1)	*E/F	*C	*D	*В	*C	D	С	None
Pombers River (Sub-reach 2)	E/F	D	Е	*B	D	D	C	none
Kromme River	E/F	D/E	F	B/C	D/I		D	None

*Visited by specialists but no detailed data collected, ECs were estimated based on specialists' observation.

Explanation for Alternative Ecological Categories (AEC)

Steenbras River:	No AEC assessed because the present condition can probably be maintained
	with fairly low EWRs.
Pombers River:	No AEC because the releases from the Wit River are likely to prevent a higher
	ecological category from being attained.

Kromme River: No AEC because the releases from the Wit River are likely to prevent a higher ecological category from being attained.

5 EWR RESULTS

Mr Anton Sparks of Aurecon provided the monthly hydrological data (i.e. natural and present day hydrology) used in this report. The length of the simulated records was 76 years, 1928 to 2004. A summary of natural and present day volumes at the proposed development sites is given in Table 5.1.

Table 5.1	Summary hydrology at proposed development sites
-----------	---

River	Natural (MCM)	Present Day (MCM)	% Natural	Comment							
	Steenbras River										
Below lower Steenbras dam wall	54.9	1.7	3.1	Seepage through left flank may provide some baseflow							
Pombers River											
Upstream of the Kromme and Pombers Confluence	1.5	6.4	426.7	Flow from Gawie se water may have a more seasonal distribution than the 0.41 Mm ³ /month assumed							
		Kromme	River								
Downstream of the Kromme and Pombers Confluence	3.6	8.5	236.1	-							

5.1 Streenbras River

Reserve to be met at Steenbras (lower) Dam Wall.	
--	--

An EWR was determined for a B/C Ecological Category. The summary hydrology, rule tables and flood requirements for the Steenbras River are provided in Table 5.2 – Table 5.4 respectively.

Recommended Ecological Category (REC): B/C.

Desk	top Vers	ion 2, Ge	enerated	on 2009/	07/09		
					e for Quat	cernary Cat	cchment Area:
Total	. Runoff	: R002	.NATG4R0	0			
Annua	l Flows	(Mill. c [.]	u.mor	index val	ues):		
MAR		=	54.876				
S.Dev	· .	=	18.443				
CV		=	0.336				
Q75		=	0.930				
Q75/M	ÍMF	=	0.203				
BFI I	ndex	=	0.397				
CV(JJ	A+JFM) II	ndex =	1.527				
Ecolo	gical Ca	tegory =	B/C				
Total	IFR	=	7.404	(13.49 %M	AR)		
Maint	Lowflow	w =		(11.07 %M			
	ht Lowflo		4.095	(7.46 %M	AR)		
	. Highflo		1.331	(2.42 %M	AR)		
Month	ly Distr	ibutions	(Mill.	cu. m.)			
Distr	ibution ?	Туре : W	.Cape(we	t)			
Month	Natu:	ral Flow	S		ied Flows	(IFR)	
				Low f	lows H:	igh Flows 🗅	Fotal Flows
	Mean	SD	CV		Drought	Maint.	Maint.
Oct	4.030	3.196	0.793	0.673	0.440	0.000	0.673
Nov	2.136	1.330	0.623		0.345		0.509
Dec	1.488	1.203	0.809	0.370		0.000	0.370
Jan	1.018	1.032	1.013	0.284	0.196	0.000	0.284
	0.773	0.448	0.579	0.235	0.164	0.000	0.235
Feb		0.813	0.941	0.227	0.150	0.000	0.227
Feb Mar	0.864	0.010		0 070	0.189	0.000	0.273
	1.972	2.103	1.066	0.273			
Mar			1.066 0.960	0.273	0.266	0.121	0.511
Mar Apr	1.972	2.103				0.121 0.121	0.511 0.726
Mar Apr May	1.972 4.352	2.103 4.180	0.960	0.390	0.266		
Mar Apr May Jun	1.972 4.352 8.480	2.103 4.180 7.360	0.960 0.868	0.390 0.605	0.266 0.408	0.121	0.726

Table 5.3 Rule tables for B/C category EWRs for the Steenbras River EWR Site

Summar Total Region Ecolog	Desktop Version 2, Generated on 28/01/2010 Summary of IFR rule curves (Desktop Version 2) for: Total Runoff: R002.NATG4R00 Regional Type: W.Cape(wet) Ecological Category = B/C Data are given in m^3 * 10^6 monthly flow volume											
Data a	re giver	1 TU W.3	~ TO0 U	ionunty 1	TOM AOTI	Julie						
Month	Month % Points											
	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%		
Oct	0.839	0.839	0.836	0.828	0.811	0.777	0.717	0.625	0.514	0.442		
Nov	0.634	0.634	0.632	0.626	0.614	0.589	0.546	0.479	0.399	0.347		
Dec	0.458	0.458	0.455	0.450	0.437	0.412	0.373	0.322	0.276	0.255		
Jan	0.351	0.351	0.349	0.345	0.335	0.316	0.287	0.248	0.213	0.197		
Feb	0.290	0.290	0.289	0.285	0.277	0.262	0.238	0.207	0.178	0.165		
Mar	0.282	0.282	0.281	0.279	0.273	0.262	0.242	0.211	0.175	0.151		
Apr	0.340	0.340	0.339	0.336	0.329	0.317	0.294	0.259	0.217	0.190		
May	0.621	0.621	0.618	0.611	0.597	0.568	0.516	0.437	0.342	0.281		
Jun	0.896	0.896	0.893	0.887	0.874	0.849	0.800	0.713	0.570	0.424		
Jul	1.863	1.773	1.691	1.615	1.539	1.393	1.302	1.137	0.867	0.589		
Aug	2.015	1.925	1.842	1.765	1.688	1.538	1.439	1.260	0.969	0.670		
Sep	1.222	1.192	1.162	1.131	1.092	1.020	0.935	0.805	0.649	0.548		

Reser	Reserve Flows without High Flows												
Oct	0.839	0.839	0.836	0.828	0.811	0.777	0.717	0.625	0.514	0.442			
Nov	0.634	0.634	0.632	0.626	0.614	0.589	0.546	0.479	0.399	0.347			
Dec	0.458	0.458	0.455	0.450	0.437	0.412	0.373	0.322	0.276	0.255			
Jan	0.351	0.351	0.349	0.345	0.335	0.316	0.287	0.248	0.213	0.197			
Feb	0.290	0.290	0.289	0.285	0.277	0.262	0.238	0.207	0.178	0.165			
Mar	0.282	0.282	0.281	0.279	0.273	0.262	0.242	0.211	0.175	0.151			
Apr	0.340	0.340	0.339	0.336	0.329	0.317	0.294	0.259	0.217	0.190			
May	0.486	0.486	0.484	0.479	0.470	0.452	0.419	0.368	0.307	0.268			
Jun	0.760	0.760	0.758	0.753	0.744	0.725	0.689	0.625	0.519	0.411			
Jul	1.002	1.002	0.999	0.993	0.980	0.955	0.908	0.822	0.682	0.538			
Aug	1.154	1.154	1.150	1.143	1.128	1.100	1.045	0.946	0.784	0.618			
Sep	0.987	0.987	0.983	0.974	0.955	0.916	0.848	0.743	0.616	0.535			
	cal Durat												
Oct	9.140	6.550	4.550	2.730	2.510	2.300	2.200	2.110	1.960	0.840			
Nov	3.400	2.450	2.030	1.930	1.760	1.710	1.620	1.470	1.330	0.740			
Dec	2.400	1.490	1.310	1.210	1.160	1.070	1.010	0.960	0.910	0.640			
Jan	1.890	1.130	0.900	0.830	0.770	0.740	0.700	0.630	0.570	0.530			
Feb	1.090	0.990	0.850	0.710	0.620	0.580	0.540	0.510	0.460	0.380			
Mar	1.550	0.960	0.820	0.690	0.640	0.590	0.510	0.440	0.430	0.340			
Apr	4.420	3.620	2.200	1.550	1.150	0.990	0.770	0.630	0.480	0.380			
May	9.310	6.750	4.360	3.590	3.130	2.170	1.810	1.420	1.020	0.670			
Jun	19.100	14.200	10.300	9.270	6.390	4.300	2.780	2.140	1.670	0.850			
Jul	20.690	15.340	14.400	12.190	10.850	8.570	7.280	5.420	2.780	1.750			
Aug	19.970	16.750	13.970	12.490	10.820	9.970	7.840	5.970	4.630	2.430			
Sep	13.220	11.640	9.040	6.990	5.500	4.560	3.120	2.470	2.310	1.410			

Table 5.4Flood requirements (Steenbras River)

Month	Peak daily Q (m ³ s ⁻¹)	Duration (Days)	Volume (MCM)	%MAR
October	0.000	0	0.000	0.000
November	0.000	0	0.000	0.000
December	0.000	0	0.000	0.000
January	0.000	0	0.000	0.000
February	0.000	0	0.000	0.000
March	0.000	0	0.000	0.000
April	0.000	0	0.000	0.000
May	1.000	2	0.121	0.220
June	1.000	2	0.121	0.220
July	4.000	2	0.484	0.880
August	4.000	2	0.484	0.880
September	1.000	2	0.121	0.220

5.1.1 Motivation for the Steenbras EWR and suggestions for improved management of the river ecosystem

The changes that have occurred in the Steenbras River are a result of the presence of the dam and resultant changes to the flow regime. Although the system is in fairly good ecological condition, implementing EWR releases can reduce the risk of a further and possibly dramatic drop in condition.

The site currently receives about 2.5% of the MAR, with no summer base flows and dampened winter floods (1.4 MCM of an estimated natural MAR of 55 MCM). The recommended EWR is 13.49% of MAR. In recognition of the resilient morphology of the Steenbras River downstream of the dam, no channel forming or maintenance floods have been requested, although five small intra-annual floods have been requested to maintain and improve the low bars and lower flood zone of the channel, and improve the vegetation and bank stability of the active channel. The summer base flows and Class 1 and 2 floods will also stimulate the reestablishment of the marginal vegetation in parts of the channel.

There is an urgency to investigate and remedy the water quality immediately downstream of the lower Steenbras dam wall (See Figure 4.1).

Benefits of improved flows:

- Protect riparian vegetation from desiccation and thus also from future fire damage.
- Very high socio-economic (tourism) use in summer the baseflows will improve recreation options and ensure adequate water quality in the river.

5.2 Pombers EWR Site

Reserve to be met at: Doolhof Farm above the confluence with the Kromme River.

EWRs were determined for a C Ecological Category. The summary hydrology, rule tables and flood requirements for the Pombers River are provided in Table **5.5** – Table 5.7, respectively.

Recommended Ecological Category: C

Table 5.5 Summary hydrology table for C -category EWRs for the Pombers River EWR Site

Desktop Version 2, Generated on 2009/07/09 Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff: Pombers Annual Flows (Mill. cu. m or index values): 1.518 MAR = S.Dev. 0.682 = CV = 0.449 0.010 075 = Q75/MMF = 0.079 BFI Index = 0.355 CV(JJA+JFM) Index = 1.927 Ecological Category = C Total IFR = 0.331 (21.82 %MAR) Maint. Lowflow = 0.188 (12.40 %MAR) Drought Lowflow = 0.185 (12.18 %MAR) Maint. Highflow = 0.143 (9.42 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type: W.Cape(wet) Natural Flows Modified Flows (IFR) Month Low flows High Flows Total Flows CV Mean SD Maint. Drought Maint. Maint. 0.033 0.118 0.280 0.024 0.024 0.008 0.032 Oct 0.002 0.021 0.018 0.065 Nov 0.322 0.019 0.020 0.030 0.016 0.515 0.010 0.011 0.000 0.010 Dec 0.013 Jan 0.010 0.739 0.005 0.005 0.000 0.005 0.010 0.000 0.014 1.413 0.004 0.002 0.004 Feb 0.016 Mar 0.016 1.043 0.004 0.003 0.000 0.004 Apr 0.043 0.058 1.355 0.006 0.005 0.000 0.006 0.136 0.169 1.246 0.012 0.011 0.018 May 0.030 0.230 0.228 0.992 0.019 0.018 0.031 0.050 Jun 0.312 0.260 0.833 0.027 0.027 0.015 0.042 Jul Auq 0.342 0.260 0.761 0.032 0.032 0.054 0.086 Sep 0.204 0.124 0.610 0.028 0.029 0.015 0.043

Desktop Version 2, Generated on 24/01/2010 Summary of IFR rule curves (Desktop Version 2) for: Total Runoff: Pombe Regional Type: W.Cape(wet) Ecological Category = C Data are given in m^3 * 10^6 monthly flow volume Month * Points 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.043 0.042 0.027 0.025 0.023 0.020 0.011 0.010 Dec 0.014 0.017 0.006 0.006 0.008 0.008 0.008 0.008 0.008 0.008 0.005 0.005 0.005 </th <th colspan="11">Table 5.6 Rule tables for C-category EWRs for the Pombers River EWR Site</th>	Table 5.6 Rule tables for C-category EWRs for the Pombers River EWR Site												
Total Runoff: Pombe Regional Type: W.Cape(wet) Ecological Category = C Data are given in m^3 * 10^6 monthly flow volume Month * Points 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.043 0.043 0.042 0.041 0.038 0.020 0.028 0.028 0.027 0.027 0.027 0.021 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.010 0.00													
Regional Type: W.Cape(wet) Ecological Category = C Data are given in m'3 * 10^6 monthly flow volume Month * Points 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.043 0.043 0.042 0.021 0.022 0.022 0.022 0.022 0.022 0.022 0.021 0.014 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.010 0.000 0.	Summar	y of IFR	rule cu	urves (De	esktop Ve	ersion 2)) for:						
Ecological Category = C Data are given in m^3 * 10^6 monthly flow volume Month & Points 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.043 0.042 0.041 0.038 0.028 0.028 0.028 0.027 0.027 0.027 0.023 0.020 0.011 Dec 0.014 0.014 0.014 0.014 0.013 0.012 0.010 0.006 Jan 0.007 0.007 0.007 0.007 0.006 <td>Total 3</td> <td>Runoff:</td> <td></td> <td>Pombe</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Total 3	Runoff:		Pombe									
Data are given in m^3 * 10^6 monthly flow volume Month % Points 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.043 0.043 0.042 0.027 0.025 0.023 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.008 0.007 0.007 0.006 0.008 0.007 0.007 0.007 0.007 0.007 <td< td=""><td>Region</td><td>al Type:</td><td>W.Cape(</td><td>(wet)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Region	al Type:	W.Cape((wet)									
Month % Points 10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.043 0.043 0.041 0.041 0.034 0.028 0.022 0.027 0.027 0.025 0.023 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.006 0.000 0.001 0.010 0.011 0.010 0.011 0.010 0.011													
10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.044 0.043 0.042 0.041 0.038 0.028 0.025 Nov 0.228 0.028 0.027 0.027 0.023 0.020 0.013 Dec 0.014 0.014 0.014 0.014 0.013 0.012 0.012 0.010 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.000 <													
10% 20% 30% 40% 50% 60% 70% 80% 90% 99% Oct 0.044 0.044 0.043 0.042 0.041 0.038 0.028 0.025 Nov 0.228 0.028 0.027 0.027 0.023 0.020 0.013 Dec 0.014 0.014 0.014 0.014 0.013 0.012 0.012 0.010 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.000 <													
Oct 0.044 0.043 0.043 0.042 0.041 0.038 0.034 0.028 0.025 Nov 0.028 0.028 0.028 0.027 0.027 0.025 0.023 0.020 0.011 Jan 0.007 0.007 0.007 0.007 0.007 0.006	Month												
Nov 0.028 0.028 0.028 0.027 0.027 0.025 0.023 0.020 0.011 Dec 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.000		10%	20%	30%	40%			70%	80%	90%	99%		
Dec 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.000 </td <td>Oct</td> <td>0.044</td> <td>0.044</td> <td>0.043</td> <td>0.043</td> <td>0.042</td> <td>0.041</td> <td>0.038</td> <td>0.034</td> <td>0.028</td> <td>0.025</td>	Oct	0.044	0.044	0.043	0.043	0.042	0.041	0.038	0.034	0.028	0.025		
Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.005 Feb 0.005 0.005 0.005 0.005 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.026 0.026 0.022 0.020 0.013 0.022 0.020 0.026 0.022 0.020 0.021 0.022 0.020 0.021 0.022 0.020 0.021 </td <td>Nov</td> <td>0.028</td> <td>0.028</td> <td>0.028</td> <td>0.028</td> <td>0.027</td> <td>0.027</td> <td>0.025</td> <td>0.023</td> <td>0.020</td> <td>0.018</td>	Nov	0.028	0.028	0.028	0.028	0.027	0.027	0.025	0.023	0.020	0.018		
Feb 0.005 0.005 0.005 0.005 0.000 0.001 0	Dec	0.014	0.014	0.014	0.014	0.014	0.013	0.013		0.011	0.010		
Mar 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.003 0.003 Apr 0.008 0.008 0.008 0.008 0.007 0.007 0.006 0.006 0.006 May 0.038 0.065 0.064 0.064 0.064 0.066 0.065 0.061 0.065 0.062 0.048 0.036 0.020 Jul 0.065 0.063 0.060 0.058 0.055 0.051 0.048 0.044 0.036 0.020 Jul 0.065 0.061 0.059 0.055 0.051 0.048 0.044 0.036 0.028 Sep 0.069 0.065 0.061 0.059 0.056 0.051 0.041 0.035 0.038 Reserve Flows without High Flows 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.027 0.026 0.026 0.020 0.001 0.000 <td>Jan</td> <td>0.007</td> <td>0.007</td> <td>0.007</td> <td>0.007</td> <td>0.007</td> <td>0.007</td> <td>0.006</td> <td></td> <td>0.006</td> <td>0.005</td>	Jan	0.007	0.007	0.007	0.007	0.007	0.007	0.006		0.006	0.005		
Apr 0.008 0.008 0.008 0.007 0.007 0.006 0.006 0.006 0.005 May 0.038 0.038 0.038 0.037 0.036 0.034 0.030 0.024 0.017 0.010 Jun 0.065 0.065 0.064 0.063 0.060 0.056 0.048 0.034 0.035 0.024 Jul 0.065 0.063 0.060 0.056 0.048 0.044 0.035 0.028 Aug 0.142 0.132 0.123 0.116 0.108 0.094 0.088 0.076 0.057 0.038 Sep 0.065 0.061 0.059 0.056 0.047 0.041 0.035 0.030 Reserve Flows without High Flows	Feb												
May 0.038 0.038 0.037 0.036 0.034 0.030 0.024 0.017 0.010 Jun 0.065 0.064 0.063 0.060 0.056 0.048 0.035 0.020 Jul 0.065 0.063 0.060 0.055 0.051 0.048 0.044 0.035 0.028 Aug 0.142 0.132 0.116 0.108 0.094 0.088 0.076 0.057 0.038 Sep 0.069 0.065 0.061 0.059 0.056 0.050 0.047 0.041 0.035 0.030 Reserve Flows without High Flows 0 0 0.026 0.026 0.024 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.005 0.005 0.005 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006	Mar												
Jun 0.065 0.065 0.064 0.063 0.060 0.056 0.048 0.035 0.020 Jul 0.065 0.063 0.060 0.058 0.055 0.051 0.048 0.044 0.035 0.028 Aug 0.142 0.132 0.123 0.116 0.108 0.094 0.088 0.076 0.057 0.038 Sep 0.069 0.065 0.061 0.059 0.056 0.047 0.041 0.035 0.030 Reserve Flows without High Flows 0.026 0.022 0.020 0.026 0.024 Nov 0.026 0.026 0.025 0.024 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.005 Mac 0.016 0.016 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Jul 0.065 0.063 0.060 0.058 0.055 0.051 0.048 0.044 0.036 0.028 Aug 0.142 0.132 0.123 0.116 0.108 0.094 0.088 0.076 0.057 0.038 Sep 0.069 0.065 0.061 0.059 0.056 0.050 0.047 0.041 0.035 0.030 Reserve Flows without High Flows 0.026 0.026 0.022 0.020 0.020 0.014 Oct 0.034 0.034 0.033 0.032 0.031 0.029 0.026 0.024 Nov 0.026 0.026 0.026 0.022 0.020 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.005 Mar 0.005 0.005 0.005 0.005 0.005 0.007 0.007 0.006 0.006 0.006 0.006 May 0.016 0.016 0.016 0.016 0.015 0.014 0.013	-												
Aug 0.142 0.132 0.123 0.116 0.108 0.094 0.088 0.076 0.057 0.038 Sep 0.069 0.065 0.061 0.059 0.056 0.050 0.041 0.035 0.030 Reserve Flows without High Flows 0ct 0.034 0.034 0.033 0.033 0.032 0.031 0.029 0.026 0.024 Nov 0.026 0.026 0.026 0.026 0.022 0.021 0.011 0.011 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 Mar 0.005 0.005 0.005 0.005 0.006 0.006 0.000 Mar 0.005 0.005 0.005 0.005 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000													
Sep 0.069 0.065 0.061 0.059 0.056 0.050 0.047 0.041 0.035 0.030 Reserve Flows without High Flows Oct 0.034 0.034 0.033 0.033 0.032 0.031 0.029 0.026 0.024 Nov 0.026 0.026 0.026 0.026 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.000 0.000 0.000 0.000 0.000 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Reserve Flows without High Flows Oct 0.034 0.034 0.033 0.033 0.032 0.031 0.029 0.026 0.024 Nov 0.026 0.026 0.026 0.026 0.025 0.024 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.000	-												
Oct 0.034 0.034 0.033 0.033 0.032 0.031 0.029 0.026 0.026 Nov 0.026 0.026 0.026 0.026 0.025 0.024 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.007 0.000	Sep	0.069	0.065	0.061	0.059	0.056	0.050	0.047	0.041	0.035	0.030		
Oct 0.034 0.034 0.033 0.033 0.032 0.031 0.029 0.026 0.026 Nov 0.026 0.026 0.026 0.026 0.025 0.024 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.007 0.000	_												
Nov 0.026 0.026 0.026 0.026 0.025 0.024 0.022 0.020 0.018 Dec 0.014 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.000				-									
Dec 0.014 0.014 0.014 0.013 0.013 0.012 0.011 0.010 Jan 0.007 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.000 </td <td></td>													
Jan 0.007 0.007 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 Feb 0.005 0.005 0.005 0.005 0.005 0.006 0.000 </td <td></td>													
Feb 0.005 0.005 0.005 0.005 0.004 0.000 0													
Mar 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.003 0.003 Apr 0.008 0.008 0.008 0.008 0.007 0.007 0.006 0.006 0.005 May 0.016 0.016 0.016 0.016 0.016 0.016 0.015 0.014 0.013 0.012 0.010 Jun 0.027 0.027 0.027 0.027 0.027 0.026 0.025 0.024 0.021 0.018 Jul 0.038 0.038 0.038 0.038 0.037 0.036 0.034 0.030 0.027 Aug 0.047 0.047 0.046 0.046 0.045 0.044 0.041 0.037 0.032 Sep 0.039 0.039 0.039 0.038 0.038 0.036 0.030 0.030 Nov 0.090 0.800 0.070 0.060 0.060 0.050 0.040 0.030 D													
Apr 0.008 0.008 0.008 0.007 0.007 0.006 0.006 0.005 May 0.016 0.016 0.016 0.016 0.016 0.015 0.014 0.013 0.012 0.010 Jun 0.027 0.027 0.027 0.027 0.026 0.025 0.024 0.021 0.018 Jul 0.038 0.038 0.038 0.038 0.037 0.036 0.034 0.030 0.027 Aug 0.047 0.047 0.046 0.046 0.045 0.044 0.041 0.037 0.032 Sep 0.039 0.039 0.039 0.038 0.038 0.038 0.033 0.030 0.020 Natural Duration curves													
May 0.016 0.016 0.016 0.016 0.015 0.014 0.013 0.012 0.010 Jun 0.027 0.027 0.027 0.027 0.027 0.026 0.025 0.024 0.021 0.018 Jul 0.038 0.038 0.038 0.038 0.037 0.036 0.034 0.030 0.027 Aug 0.047 0.047 0.046 0.046 0.045 0.044 0.041 0.037 0.032 Sep 0.039 0.039 0.039 0.038 0.038 0.038 0.036 0.033 0.030 0.029 Natural Duration curves													
Jun 0.027 0.027 0.027 0.027 0.026 0.025 0.024 0.021 0.018 Jul 0.038 0.038 0.038 0.038 0.038 0.037 0.036 0.034 0.030 0.027 Aug 0.047 0.047 0.046 0.046 0.045 0.044 0.041 0.037 0.032 Sep 0.039 0.039 0.039 0.039 0.038 0.038 0.036 0.033 0.030 0.029 Natural Duration curves 0.120 0.110 0.100 0.090 0.080 0.050 Nov 0.090 0.080 0.070 0.060 0.060 0.050 0.020 0.020 0.020 0.010 Jan 0.020 0.010	-												
Jul 0.038 0.038 0.038 0.038 0.037 0.036 0.034 0.030 0.027 Aug 0.047 0.047 0.046 0.046 0.046 0.045 0.044 0.041 0.037 0.032 Sep 0.039 0.039 0.039 0.039 0.038 0.038 0.036 0.031 0.037 0.032 Natural Duration curves 0.039 0.039 0.039 0.039 0.038 0.038 0.036 0.033 0.030 0.029 Nov 0.160 0.140 0.130 0.120 0.110 0.100 0.090 0.080 0.050 Nov 0.090 0.080 0.070 0.060 0.060 0.050 0.040 0.030 Dec 0.050 0.040 0.030 0.030 0.030 0.030 0.020 0.020 0.020 0.010 0.010 Jan 0.020 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.000 <td>-</td> <td></td>	-												
Aug0.0470.0470.0460.0460.0460.0450.0440.0410.0370.032Sep0.0390.0390.0390.0390.0380.0380.0360.0330.0300.029Natural Duration curvesOct0.1600.1400.1300.1200.1200.1100.1000.0900.0800.050Nov0.0900.0800.0700.0700.0600.0600.0500.0500.0400.030Dec0.0500.0400.0300.0300.0300.0300.0200.0200.0200.010Jan0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Mar0.0300.0700.0400.0300.0200.0100.0100.0100.010May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010													
Sep0.0390.0390.0390.0390.0380.0380.0360.0330.0300.029Natural Duration curvesOct0.1600.1400.1300.1200.1100.1000.0900.0800.050Nov0.0900.0800.0700.0700.0600.0600.0500.0500.0400.030Dec0.0500.0400.0300.0300.0300.0300.0200.0200.0200.010Jan0.0200.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.000Mar0.0300.0700.0400.0300.0200.0100.0100.010Apr0.1000.0700.0400.0300.0200.0100.0100.010May0.3400.2000.1500.1200.0800.0700.0400.0300.020													
Natural Duration curves Oct 0.160 0.140 0.130 0.120 0.110 0.100 0.090 0.080 0.050 Nov 0.090 0.080 0.070 0.060 0.060 0.050 0.050 0.040 0.030 Dec 0.050 0.040 0.030 0.030 0.030 0.020 0.020 0.020 0.010 Jan 0.020 0.010	-												
Oct0.1600.1400.1300.1200.1200.1100.1000.0900.0800.050Nov0.0900.0800.0700.0700.0600.0600.0500.0500.0400.030Dec0.0500.0400.0300.0300.0300.0300.0200.0200.0200.010Jan0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.0000.0000.000Mar0.0300.0100.0100.0100.0100.0100.0100.0100.010Apr0.1000.0700.0400.0300.0200.0100.0400.0300.020May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010	seb	0.039	0.039	0.039	0.039	0.030	0.030	0.030	0.033	0.030	0.029		
Oct0.1600.1400.1300.1200.1200.1100.1000.0900.0800.050Nov0.0900.0800.0700.0700.0600.0600.0500.0500.0400.030Dec0.0500.0400.0300.0300.0300.0300.0200.0200.0200.010Jan0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.0000.0000.000Mar0.0300.0100.0100.0100.0100.0100.0100.0100.010Apr0.1000.0700.0400.0300.0200.0100.0400.0300.020May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010	Natura	l Durati	on curve	es									
Nov0.0900.0800.0700.0700.0600.0600.0500.0500.0400.030Dec0.0500.0400.0300.0300.0300.0300.0200.0200.0200.010Jan0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.0000.0000.000Mar0.0300.0100.0100.0100.0100.0100.0100.0100.010Apr0.1000.0700.0400.0300.0200.0100.0400.0300.0200.010May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010					0.120	0.120	0.110	0.100	0.090	0.080	0.050		
Dec0.0500.0400.0300.0300.0300.0300.0200.0200.0200.0200.010Jan0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.0000.0000.000Mar0.0300.0100.0100.0100.0100.0100.0100.0100.010Apr0.1000.0700.0400.0300.0200.0100.0400.0300.020May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010													
Jan0.0200.0100.0100.0100.0100.0100.0100.0100.0100.010Feb0.0200.0100.0100.0100.0100.0100.0100.0000.0000.0000.000Mar0.0300.0100.0100.0100.0100.0100.0100.0100.0100.0100.000Apr0.1000.0700.0400.0300.0200.0100.0100.0100.0100.010May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010													
Feb0.0200.0100.0100.0100.0100.0100.0000.0000.0000.000Mar0.0300.0100.0100.0100.0100.0100.0100.0100.0100.000Apr0.1000.0700.0400.0300.0200.0100.0100.0100.0100.0100.010May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010													
Mar0.0300.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0100.000Apr0.1000.0700.0400.0300.0200.0100.0100.0100.0100.0100.010May0.3400.2000.1500.1200.0800.0700.0400.0300.0200.010													
May 0.340 0.200 0.150 0.120 0.080 0.070 0.040 0.030 0.020 0.010													
May 0.340 0.200 0.150 0.120 0.080 0.070 0.040 0.030 0.020 0.010	Apr	0.100	0.070	0.040	0.030	0.020	0.010	0.010	0.010	0.010	0.010		
	-												
Jun 0.640 0.380 0.250 0.190 0.160 0.140 0.090 0.060 0.050 0.020	Jun	0.640	0.380	0.250	0.190	0.160	0.140	0.090	0.060	0.050	0.020		
Jul 0.730 0.480 0.390 0.280 0.230 0.160 0.130 0.110 0.090 0.040		0.730								0.090			
Aug 0.720 0.520 0.400 0.310 0.260 0.220 0.170 0.150 0.130 0.100	Aug	0.720	0.520	0.400	0.310	0.260	0.220	0.170	0.150	0.130	0.100		
Sep 0.400 0.240 0.180 0.160 0.160 0.150 0.140 0.140 0.130 0.080	Sep	0.400	0.240						0.140	0.130	0.080		

Table 5.6 Rule tables for C-category EWRs for the Pombers River EWR Site

Month	Peak daily Q (m ³ s ⁻¹)	Duration (Days)	Volume (MCM)	%MAR
October	0.069	2	0.008	0.550
November	0.013	2	0.002	0.100
December	0.000	0	0.000	0.000
January	0.000	0	0.000	0.000
February	0.000	0	0.000	0.000
March	0.000	0	0.000	0.000
April	0.000	0	0.000	0.000
May	0.150	2	0.018	1.200
June	0.254	2	0.031	2.030
July	0.125	2	0.015	1.000
August	0.445	2	0.054	3.550
September	0.125	2	0.015	1.000

 Table 5.7
 Flood requirements for the Pombers River

5.2.1 Motivation for the Pombers EWR and suggestions for improved management of the river ecosystem

The proposed increased flows (10 MCM) during winter months would cause further incision of the channel within sub-reach 1 while sub-reach 2 is likely to be flooded significantly by the proposed reservoir. It should be noted that it was assumed that the winter months are May – October. Since the stream is not strongly perennial, floods were not considered in this option although 800% more water will be added to the river. Also, floods were not considered because there is no plan to place any dam on the Pombers River, so the floods will still come through anyway.

As far as the recommendations for ecological water requirements are concerned, no big floods are required to maintain this river reach, since any floods would only serve to further accelerate the erosion of the active channel currently happening as a result of the highly elevated base flows. The planned releases are going to increase flows higher than would have been motivated for EWRs. Therefore, from ecological point of view, there is no compelling reason to motivate for such a proposed reserve.

5.3 Kromme EWR Site

Reserve to be met at: Doolhof Farm below the confluence with the Pombers River.
Reserve to be met at: Licolbot Farm below the contilience with the Pompers River

EWRs have been determined (using the calibrated desktop), for a D Ecological Category. The summary hydrology, rule tables and flood requirements for the Kromme River are provided in Table 5.8 – Table 5.10 respectively.

Recommended Ecological Category (REC): D.

Table 5.8 Summary hydrology table for D-category EWR for the Kromme River EWR Site Desktop Version 2, Generated on 2009/07/09

Summary of Desktop (Version 2) estimate for Quaternary Catchment Area: Total Runoff: KromP Annual Flows (Mill. cu. m or index values): = MAR 3.557 S.Dev. = 1.602 CV = 0.450 = Q75 0.030 Q75/MMF 0.101 = BFI Index = 0.354 CV(JJA+JFM) Index = 1.977 Ecological Category = D = Total IFR 0.505 (14.19 %MAR) Maint. Lowflow = 0.216 (6.07 %MAR) Drought Lowflow = 0.216 (6.06 %MAR) Maint. Highflow = 0.289 (8.12 %MAR) Monthly Distributions (Mill. cu. m.) Distribution Type : W.Cape(wet) Natural Flows Modified Flows (IFR) Month Low flows High Flows Total Flows Mean SD CV Maint. Drought Maint. Maint. 0.076 0.275 0.2770.028 0.028 0.017 0.044 Oct Nov 0.152 0.048 0.319 0.021 0.021 0.003 0.025 0.037 0.012 Dec 0.070 0.530 0.012 0.000 0.012 0.030 0.024 0.784 0.006 0.006 0.000 0.006 Jan 0.023 0.030 1.323 0.004 0.005 0.000 0.004 Feb 0.032 0.039 0.005 0.005 0.000 0.005 Mar 1.240 0.100 0.136 1.365 0.007 0.007 0.000 0.007 Apr May 0.320 0.398 1.244 0.013 0.013 0.037 0.050 0.541 0.535 0.990 0.062 0.022 0.020 0.084 Jun 0.734 Jul 0.611 0.833 0.030 0.030 0.031 0.061 Aug 0.802 0.612 0.762 0.036 0.036 0.109 0.145 0.478 0.292 0.612 0.032 0.032 0.031 0.062 Sep

Table 5.9 Rule tables for D -category EWRs for the Kromme River EWR Site

Summar Total Region Ecolog	Desktop Version 2, Generated on 28/01/2010 Summary of IFR rule curves (Desktop Version 2) for: Total Runoff: KromP Regional Type: W.Cape(wet) Ecological Category = D Data are given in m^3 * 10^6 monthly flow volume											
Month		% Poir										
	10%	20%	30%	40%	50%	60%	70%	80%	90%	99%		
Oct	0.080	0.080	0.079	0.078	0.076	0.072	0.064	0.053	0.039	0.030		
Nov	0.047	0.047	0.047	0.047	0.046	0.043	0.040	0.034	0.027	0.022		
Dec	0.022	0.022	0.022	0.022	0.021	0.020	0.018	0.015	0.013	0.012		
Jan	0.011	0.011	0.011	0.011	0.011	0.010	0.009	0.008	0.007	0.006		
Feb	0.008	0.008	0.008	0.008	0.008	0.007	0.007	0.006	0.005	0.000		
Mar	0.009	0.009	0.009	0.009	0.009	0.008	0.008	0.007	0.006	0.005		
Apr	0.013	0.013	0.013	0.013	0.013	0.012	0.011	0.010	0.008	0.007		
May	0.082	0.082	0.081	0.080	0.077	0.072	0.062	0.047	0.029	0.017		
Jun	0.146	0.146	0.146	0.144	0.141	0.134	0.122	0.100	0.064	0.027		
Jul	0.121	0.115	0.110	0.105	0.100	0.090	0.084	0.072	0.053	0.034		
Aug	0.273	0.253	0.235	0.219	0.204	0.174	0.160	0.134	0.092	0.048		
Sep	0.123	0.115	0.108	0.102	0.096	0.085	0.076	0.062	0.046	0.035		
T												

Reser	Reserve Flows without High Flows												
Oct	0.055	0.055	0.055	0.054	0.053	0.051	0.047	0.040	0.033	0.028			
Nov	0.043	0.043	0.043	0.042	0.041	0.039	0.036	0.031	0.025	0.022			
Dec	0.022	0.022	0.022	0.022	0.021	0.020	0.018	0.015	0.013	0.012			
Jan	0.011	0.011	0.011	0.011	0.011	0.010	0.009	0.008	0.007	0.006			
Feb	0.008	0.008	0.008	0.008	0.008	0.007	0.007	0.006	0.005	0.000			
Mar	0.009	0.009	0.009	0.009	0.009	0.008	0.008	0.007	0.006	0.005			
Apr	0.013	0.013	0.013	0.013	0.013	0.012	0.011	0.010	0.008	0.007			
May	0.027	0.027	0.026	0.026	0.026	0.025	0.023	0.019	0.016	0.013			
Jun	0.047	0.047	0.047	0.047	0.046	0.044	0.042	0.037	0.029	0.020			
Jul	0.066	0.066	0.066	0.066	0.065	0.063	0.059	0.052	0.042	0.030			
Aug	0.080	0.080	0.080	0.079	0.078	0.076	0.071	0.063	0.050	0.037			
Sep	0.063	0.063	0.063	0.063	0.061	0.058	0.054	0.046	0.038	0.032			
	_												
	al Durati												
Oct	0.380	0.330	0.300	0.280	0.270	0.250	0.240	0.210	0.200	0.120			
Nov	0.220	0.200	0.170	0.160	0.150	0.140	0.120	0.110	0.100	0.080			
Dec	0.110	0.080	0.080	0.070	0.060	0.060	0.050	0.040	0.040	0.030			
Jan	0.050	0.030	0.030	0.030	0.030	0.020	0.020	0.020	0.010	0.010			
Feb	0.050	0.030	0.020	0.010	0.010	0.010	0.010	0.010	0.010	0.000			
Mar	0.060	0.030	0.030	0.020	0.020	0.020	0.010	0.010	0.010	0.010			
Apr	0.230	0.160	0.090	0.060	0.040	0.030	0.030	0.020	0.020	0.010			
May	0.800	0.460	0.350	0.280	0.200	0.160	0.080	0.070	0.040	0.020			
Jun	1.490	0.900	0.590	0.450	0.380	0.320	0.200	0.150	0.110	0.050			
Jul	1.730	1.120	0.920	0.670	0.550	0.370	0.310	0.270	0.220	0.090			
Aug	1.690	1.230	0.930	0.730	0.610	0.510	0.410	0.360	0.300	0.240			
Sep	0.950	0.560	0.420	0.390	0.370	0.350	0.330	0.320	0.290	0.200			

 Table 5.10
 Flood requirements for the Kromme River

Month	Peak daily Q (m ³ s ⁻¹)	Duration (Days)	Volume (MCM)	%MAR
October	0.138	2	0.017	0.470
November	0.026	2	0.003	0.090
December	0.000	0	0.000	0.000
January	0.000	0	0.000	0.000
February	0.000	0	0.000	0.000
March	0.000	0	0.000	0.000
April	0.000	0	0.000	0.000
Мау	0.305	2	0.037	1.040
June	0.515	2	0.062	1.750
July	0.253	2	0.031	0.860
August	0.898	2	0.109	3.060
September	0.253	2	0.031	0.860

5.3.1 Motivation for the Kromme EWR and suggestions for improved management of the river ecosystem

The Kromme River has been channelised for many kilometres and it is unlikely that this could be remedied by simply changing the flow patterns in the river. Restoration would require extensive reengineering of the banks and reclamation of adjacent farmlands (and riparian re-vegetation), combined with flow restoration. The cost and scale of which was not considered to be feasible.

5.4 Summary results

The EWR results are summarised in Table 5.11.

Table 5.11	EWR summar	y results for the Steenb	ras, Pombers and Kromme Rivers
------------	------------	--------------------------	--------------------------------

River	REC	nMAR/a (MCM)	Total EWR (MCM)		
Steenbras	B/C	54.876	7.404 (13.49 %nMAR)		
Pombers	С	1.518	0.331 (21.82 %nMAR)		

Kromme	D	3.557	0.505 (14.19 %nMAR)

6 **REFERENCES**

- Brooks, A.J., Haeusler, T., Reinfelds, I., Williams, S. 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50: 331 344.
- Brown, C., Magoba, R. 2009. Rivers and Wetlands of Cape Town: caring for our rich aquatic heritage. Water Research Commision, Pretoria. WRC Report No. TT376/08.
- Dickens, C.W.S., Graham, P.M. 2002. The South African Scoring System (SASS) Version 5, Rapid Bioassessment Method for Rivers. African Journal of Aquatic Sciences 27: 1-10.
- Department of Water Affairs and Forestry (DWAF). 1999. Resource directed measures for the protection of water resources. Volume 3: River ecosystems, Version 1.0. Department of Water Affairs and Forestry, Pretoria, South Africa.
- Department of Water Affairs and Forestry (DWAF). 2004. Water resource protection and assessment policy implementation process. Resource directed measures for protection of water resource: Methodology for the determination of the ecological water requirements for estuaries. Version 2. Department of Water Affairs and Forestry, Pretoria, South Africa.
- Hughes, D.A. Hannart, P. 2003: A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology, 270: 167-181.
- King, J.M., Brown, C.A., Sabet, H. 2003. A scenario-based holistic approach to environmental flow assessments for rivers. River research and applications, 19: 619-639.
- Kleynhans, C.J. 1999. A procedure for the determination of the ecological reserve for the purposes of the national water balance model for South African River. Institute of Water Quality Studies, Department of Water Affairs & Forestry, Pretoria.
- Kleynhans, CJ, Louw. MD. 2008. River EcoClassification: Manual for EcoStatus Determination (Version 2) Module A: EcoClassification and EcoStatus Determination. Water Research Commission and Department of Water Affairs and Forestry, Pretoria. WRC Report No. TT329/08.
- Kleynhans, C.J., Mackenzie, J., Louw, D.A. 2008. River EcoClassification: Manual for EcoStatus Determination (Version 2) Module F: Riparian Vegetation Response Assessment Index (VEGRAI). Water Research Commission and Department of Water Affairs and Forestry, Pretoria. WRC Report No. TT333/08.
- Rowntree, K., L. Du Preez (in prep). Module B: Geomorphology Driver Assessment Index (GAI) in C.J.
 Kleynhans and M.D. Louw, *River EcoClassification manual for Ecostatus Determination* (Version 2). Water Research Commission, Pretoria, South Africa.
- Saltveit, S.J., Bremnes, T., Brittain, J.E. 1994. Effects of a changed temperature regime on the benthos of a Norwegian regulated river. Regulated Rivers: Research and Management 9: 93 102.
- Snaddon, C. D., Wishart, M. J., Davies, B. R. 1998. Some implications of inter-basin water transfers for river ecosystem functioning and water resources management in southern Africa', Aquatic Ecosystem Health & Management, 1:2, 159 – 182.
- Thirion, C. 2008. River EcoClassification: Manual for EcoStatus Determination (Version 2) Module E: Volume 1 Macroinvertebrate Response Assessment Index (MIRAI). Water Research Commission and Department of Water Affairs and Forestry, Pretoria. WRC Report No. TT332/08.

7 ADDENDA

RIVER	Marginal zone	Non-marginal zone
	Prionium serratum	Metrosideros angustifolia
	Pennisetum macrourum	Brabejum stellatifolium
	Calopsis paniculata	Brachylaena neriifolia
	Erica caffra	Erica caffra
-	Elegia capensis	Prionium serratum
	Zantedeschia aethiopica	Dispyros glabra
Steenbras	Pelargonium cucullatum	Dodonea viscosa
	Metrosideros angustifolia (sapling)	Berzelia lanuginosa
	Blechnum capense	Cliffortia species
	Todea Barbara	Oftia africana
	Juncus effuses	Rhus glauca
	Juncus lomatophyllus	Morella serrata
	Ischyrolepis subverticillata	
	Phytolacca Americana	Conyza bonariensis
	Erharta spp.	Conyza canadensis
	Paspalum urvillei	Pennisetum clandestinum
	Juncus lomatophyllus	Rubus fruticosus
	Pentashistis spp.	Acacia mearnsii (sapling)
	Avena spp.	Acacia mearnsii
Pombers	Briza spp.	Pentashistis spp.
	Bromus spp.	Avena spp.
	Cynodon dactylon	Briza spp.
	Rubus fruticosus	Bromus spp.
	Ehrharta setacea	Cynodon dactylon
	Ehrharta ramose	Solanum nigrum
	Juncus capensis	
	Garden escapees	Populus X canescens
	Arundo donax	Acacia mearnsii
Kromme	Zantedeschia aethiopica	Arundo donax
RIOHIHE	Paspalum urvillei	Solanum mauritianum
	Acacia mearnsii (sapling)	Quercus robur
		llex mitis

Addendum 1 Plant species identified at each River EWR site

Addendum 2 Steenbras	River. G	AI Model					
FINAL DRIVER STATUS GEOMORPHOLOGY SCORING GUIDELINES	This model (GAI level IV) is designed for specialist use by trained, experienced geomorphologists, for the purposes of determining the PES and geomorphic drivers of monitoring sites. Although the data/information driving this model will assist in Reserve studies, additional ESSENTIAL data are required for flow determinations.						
GEOMORPHOLOGY DRIVERS							
COMPONENTS	RANK	RELATIVE WEIGHTING (%)	RATING	WEIGHT	Weighed score	flow related (event hydrology; high flows, floods)	CONFIDENCE
System Connectivity	3.00	60.00	1.80	0.17	0.31	0.00	3.00
Sediment supply	2.00	70.00	0.72	0.20	0.14	0.00	3.00
Transport capacity (hydrology)	1.00	100.00	1.00	0.29	0.29	100.00	4.00
Perimeter resistance	4.00	50.00	0.61	0.14	0.09	0.00	3.53
Morphological change	3.00	70.00	0.70	0.20	0.14	0.00	3.00
TOTALS		350.00		1.00	0.96		
System Driver status:	•				0.96		
Driver status:(%): >89=A; 80-89=B; 60-79=C; 40- 59=D; 20-39=E; <20=F							
HABITAT DRIVER CATEGORY	В		3.36				
		FLOW REL	ATED (%))	29.62		

Addendum 2 Steenbras River: GAI Model

FINAL DRIVER STATUS GEOMORPHOLOGY SCORING GUIDELINES	This model (GAI level IV) is designed for specialist use by trained, experienced geomorphologists, for the purposes of determining the PES and geomorphic drivers of monitoring sites. Although the data/information driving this model will assist in Reserve studies, additional ESSENTIAL data are required for flow determinations.						
GEOMORPHOLOGY DRIVER	S RANK	RELATIVE WEIGHTING (%)	RATING	WEIGHT	Weighed score	flow related (event hydrology; high flows, floods)	CONFIDENCE
System Connectivity	3.00	80.00	3.04	0.21	0.64	0.00	3.00
Sediment supply	2.00	90.00	2.37	0.24	0.56	0.00	3.00
Transport capacity (hydrology)	1.00	100.00	2.29	0.26	0.60	100.00	4.00
Perimeter resistance	4.00	60.00	1.30	0.16	0.21	0.00	3.42
Morphological change	5.00	50.00	5.01	0.13	0.66	0.00	3.00
TOTALS		380.00		1.00	2.67		
System Driver status:		<u> </u>			2.67		
Driver status:(%): >89=A; 80-89=B; 60-79=C; 40- 59=D; 20-39=E; <20=F							
HABITAT DRIVER CATEGORY	D		3.33				
		FLOW REL	ATED (%)		22.58		

Addendum 3 Pombers River: GAI Model

FINAL DRIVER STATUS GEOMORPHOLOGY SCORING GUIDELINES	This model (GAI level IV) is designed for specialist use by trained, experienced geomorphologists, for the purposes of determining the PES and geomorphic drivers of monitoring sites. Although the data/information driving this model will assist in Reserve studies, additional ESSENTIAL data are required for flow determinations.						
GEOMORPHOLOGY DRIVER	S RANK	RELATIVE WEIGHTING (%)	RATING	WEIGHT	Weighed score	flow related (event hydrology; high flows, floods)	CONFIDENCE
System Connectivity	3.00	80.00	3.61	0.21	0.76	0.00	4.00
Sediment supply	2.00	90.00	2.71	0.24	0.64	0.00	4.00
Transport capacity (hydrology)	1.00	100.00	2.29	0.26	0.60	100.00	4.00
Perimeter resistance	4.00	60.00	2.26	0.16	0.36	0.00	4.30
Morphological change	5.00	50.00	5.48	0.13	0.72	0.00	3.00
TOTALS		380.00		1.00	3.08		
System Driver status:					3.08		
Driver status:(%): >89= 59=D; 20-39=E; <20	38.37						
HABITAT DRIVER CATEGORY							3.92
					10.55		
		FLOW REL	ATED (%)		19.55		

Addendum 4 Kromme River: GAI Model

Addendum 5	Steenbras River	VEGRAI Model

Marginal zone

	MODIFICAT	ION RATING	S				
CAUSES OF MODIFICATION	INTENSITY	EXTENT	CONFIDENCE			NOTES: (give reasons fo	or each assessment)
REMOVAL	0.5	0.5	4.0				
EXOTIC INVASION	0.5		4.0				
WATER QUANTITY	3.0	3.0	4.0				
WATER QUALITY	2.0	1.0	3.0				
AVERAGE			3.8			I	
	1	RESPO	ONSE METRIC F	RATINGS			
VEGETATION COMPONENTS	RESPONSE METRIC	CONSIDER? (Y/N)	RATING	CONFIDENCE	NOTES: (give reasons for each assessment)		
WOODY	COVER	Y	2.5	4.0			
	ABUNDANCE	Y	2.5	4.0			
	SPECIES COMPOSITION	Y	0.5	4.0			
			1.8	4.0		l I	
NON-WOODY	COVER	Y	2.5	4.0	mainly a reduction in t	he availability of WET habi	itat = reduced Palmiet presence and associated graminoid
	ABUNDANCE	Y	2.5	4.0			
	SPECIES COMPOSITION	Y	0.5	4.0			
			1.8	2.7	L		
VEGETATION COMPONENTS	CONSIDER? (Y/N)	RANK	WEIGHT	RATING	WEIGHTED RATING	MEAN CONFIDENCE	NOTES: (give reasons for each assessment)
WOODY	Y	2.0	50.0	1.8	0.92	4.0	
NON-WOODY	Y	1.0	100.0	1.8	1.83	2.7	
1					2.75	3.3	
CHANGE (%) I	N MARGINAL ZONE CONDI	ΓΙΟΝ	36.7				

Non marginal zone

	MODIFICA	FION RATING	S				
CAUSES OF MODIFICATION	INTENSITY	EXTENT	CONFIDENCE		N	OTES: (give reasons for	each assessment)
REMOVAL	0.5	0.5	3.0				
EXOTIC INVASION	0.5		3.0				
WATER QUANTITY	1.0	2.0	4.0				
WATER QUALITY	1.0	1.0	3.0				
AVERAGE			3.3			I I	
	T	RESP	ONSE METRIC F	RATINGS		r r	
VEGETATION COMPONENTS	RESPONSE METRIC	CONSIDER? (Y/N)	RATING	CONFIDENCE	NOTES: (give reasons for each assessment)		
WOODY	COVER	Y	0.5	4.0			
	ABUNDANCE	Y	0.5	4.0			
	SPECIES COMPOSITION	Y	0.5	4.0			
			0.5	4.0		1	
NON-WOODY	COVER	Y	0.5	4.0			
	ABUNDANCE	Y	0.5	4.0			
	SPECIES COMPOSITION	Y	0.5	4.0			
			0.5	2.7			
VEGETATION COMPONENTS	CONSIDER? (Y/N)	RANK	WEIGHT	RATING	WEIGHTED RATING	MEAN CONFIDENCE	NOTES: (give reasons for each assessment)
WOODY	Y	1.0	100.0	0.5	0.50	4.0	
NON-WOODY	Y	2.0	75.0	0.5	0.38	2.7	
					0.88	3.3	
CHANGE (%)	N MARGINAL ZONE CONDI	TION	10.0				

Riparian zone EC

LEVEL 3 ASSESSMENT						
METRIC GROUP	CALCULATED RATING	WEIGHTED RATING	CONFIDENCE	RANK	% WEIGHT	NOTES: (give reasons for each assessment)
MARGINAL	63.3	27.1	3.3	2.0	75.0	
NON MARGINAL	90.0	51.4	3.3	1.0	100.0	
	2.0				175.0	
LEVEL 3 VEGRAI (%)				78.6		
VEGRAI EC				B/C		
AVERAGE CONFIDENCE				3.3]	

Addendum 6	Pombers River: VEGRAI Model
Marginal zone	

					,		
	MODIFICA	TION RATING	s				
CAUSES OF MODIFICATION	INTENSITY	EXTENT	CONFIDENCE			NOTES: (give reasons f	for each assessment)
REMOVAL	4.0	4.0	4.0				
EXOTIC INVASION	4.0		4.0				
WATER QUANTITY	2.0	2.0	4.0				
WATER QUALITY	1.0	1.0	4.0				
AVERAGE			4.0				
	1	RESP	ONSE METRIC F	RATINGS			
VEGETATION COMPONENTS	RESPONSE METRIC	CONSIDER? (Y/N)	RATING	CONFIDENCE		NOTES: (give re	easons for each assessment)
WOODY	COVER	Ŷ	5.0	4.0			
	ABUNDANCE	Y	5.0	4.0			
	SPECIES COMPOSITION	Y	5.0	4.0			
			5.0	4.0			
NON-WOODY	COVER	Y	3.0	4.0			
	ABUNDANCE	Y	3.0	4.0			
	SPECIES COMPOSITION	Y	3.0	4.0			
			3.0	2.7			
VEGETATION COMPONENTS	CONSIDER? (Y/N)	RANK	WEIGHT	RATING	WEIGHTED RATING	MEAN CONFIDENCE	NOTES: (give reasons for each assessment)
WOODY	Y	2.0	50.0	5.0	2.50	4.0	
NON-WOODY	Y	1.0	100.0	3.0	3.00	2.7	
					5.50	3.3	
CHANGE (%) IN MARGINAL ZONE CONDITION 73.3							

Non marginal zone

	MODIFICA	TION RATING	S		,		
CAUSES OF MODIFICATION	INTENSITY	EXTENT	CONFIDENCE		N	OTES: (give reasons for	reach assessment)
REMOVAL	5.0	5.0	4.0				
EXOTIC INVASION	5.0		4.0				
WATER QUANTITY	2.0	3.0	4.0				
WATER QUALITY	1.0	2.0	4.0				
AVERAGE			4.0				
	-,				1		
		-	ONSE METRIC	RATINGS			
VEGETATION COMPONENTS	RESPONSE METRIC	CONSIDER? (Y/N)	RATING	CONFIDENCE		NOTES: (give rea	sons for each assessment)
WOODY	COVER	Y	4.0	4.0			
	ABUNDANCE	Y	4.0	4.0			
	SPECIES COMPOSITION	Y	4.0	4.0			
	_		4.0	4.0			
NON-WOODY	COVER	Y	4.0	4.0			
	ABUNDANCE	Y	4.0	4.0			
	SPECIES COMPOSITION	Y	4.0	4.0			
			4.0	2.7			
				1			
VEGETATION COMPONENTS	CONSIDER? (Y/N)	RANK	WEIGHT	RATING	WEIGHTED RATING	MEAN CONFIDENCE	NOTES: (give reasons for each assessment)
WOODY	Y	1.0	100.0	4.0	4.00	4.0	
NON-WOODY	Y	2.0	75.0	4.0	3.00	2.7	
					7.00	3.3	
CHANGE (%) I	N MARGINAL ZONE CONDI	TION	80.0		1		

Riparian zone EC

LEVEL 3 ASSESSMENT						
METRIC GROUP	CALCULATED RATING	WEIGHTED RATING	CONFIDENCE	RANK	% WEIGHT	NOTES: (give reasons for each assessment)
MARGINAL	26.7	10.7	3.3	2.0	50.0	
NON MARGINAL	20.0	12.0	3.3	1.0	75.0	
	2.0				125.0	
LEVEL 3 VEGRAI (%)				22.7		
VEGRAI EC				Е		
AVERAGE CONFIDENCE				3.3]	

					r	1	
	MODIFICA	TION RATING	S		+	1	
CAUSES OF MODIFICATION	INTENSITY	EXTENT	CONFIDENCE			NOTES: (give reasons f	for each assessment)
REMOVAL	4.0	4.0	4.0				
EXOTIC INVASION	4.0		4.0				
WATER QUANTITY	4.0	4.0	4.0				
WATER QUALITY	0.5	0.5	4.0				
AVERAGE			4.0				
	7	RESP	ONSE METRIC F	RATINGS			
VEGETATION COMPONENTS	RESPONSE METRIC	CONSIDER? (Y/N)	RATING	CONFIDENCE		NOTES: (give re	easons for each assessment)
WOODY	COVER	Y	4.5	4.0			
Г	ABUNDANCE	Y	4.5	4.0			
Γ	SPECIES COMPOSITION	Y	4.5	4.0			
			4.5	4.0		1	
NON-WOODY	COVER	Y	4.5	4.0			
	ABUNDANCE	Y	4.5	4.0			
	SPECIES COMPOSITION	Y	4.5	4.0			
			4.5	2.7			
VEGETATION COMPONENTS	CONSIDER? (Y/N)	RANK	WEIGHT	RATING	WEIGHTED RATING	MEAN CONFIDENCE	NOTES: (give reasons for each assessment)
WOODY	Y	2.0	50.0	4.5	2.25	4.0	
NON-WOODY	Y	1.0	100.0	4.5	4.50	2.7	
					6.75	3.3	
CHANGE (%) I	CHANGE (%) IN MARGINAL ZONE CONDITION 90.0				r I I		

Addendum 7 Kromme River: VEGRAI Model

Marginal zone

Non marginal zone

-	MODIFICAT	TION RATING	S		r 1					
CAUSES OF MODIFICATION	INTENSITY	EXTENT	CONFIDENCE		NOTES: (give reasons for each assessment)					
REMOVAL	4.5	4.5	4.0							
EXOTIC INVASION	4.5		4.0							
WATER QUANTITY	1.0	1.0	4.0							
WATER QUALITY	0.5	0.5	4.0							
AVERAGE			4.0			II				
		DESD	ONSE METRIC F	ATINGS						
VEGETATION COMPONENTS	RESPONSE METRIC	CONSIDER? (Y/N)		CONFIDENCE						
WOODY	COVER	Y	4.5	4.0						
	ABUNDANCE	Y	4.5	4.0						
	SPECIES COMPOSITION	Y	4.5	4.0						
			4.5	4.0		1				
NON-WOODY	COVER	Y	4.5	4.0						
	ABUNDANCE	Y	4.5	4.0						
	SPECIES COMPOSITION	Y	4.5	4.0						
			4.5	2.7						
VEGETATION		5.0.11								
COMPONENTS	CONSIDER? (Y/N)	RANK	WEIGHT	RATING	WEIGHTED RATING	MEAN CONFIDENCE	NOTES: (give reasons for each assessment)			
NOODY	Y	1.0	100.0	4.5	4.50	4.0				
NON-WOODY	Y	2.0	75.0	4.5	3.38	2.7				
					7.88	3.3				
CHANGE (%) I	N MARGINAL ZONE CONDI	TION	90.0							

Riparian zone EC

LEVEL 3 ASSESSMENT					
METRIC GROUP	CALCULATED RATING	WEIGHTED RATING	CONFIDENCE	RANK	% WEIGHT
MARGINAL	10.0	4.0	3.3	2.0	50.0
NON MARGINAL	10.0	6.0	3.3	1.0	75.0
	2.0				125.0
LEVEL 3 VEGRAI (%)				10.0	
VEGRAI EC				F	
AVERAGE CONFIDENCE				3.3	

FLOW MODIFICATION METRICS. WITH REFERENCE TO VELOCITY PREFERENCES, WHAT ARE THE CHANGES TO THE FOLLOWING OBSERVED OR EXPECTED TO BE?	RATING	RANKING OF METRICS	% Weight	COMMENTS
Presence of taxa with a preference for very fast flowing water	0.5	1	100	Number of taxa with a preference for very fast flowing water were present & are important in determining the present EC
Abundance and/or frequency of occurrence of taxa with a preference for very fast flowing water	0.5	1	100	Most taxa were recorded in relatively higher abundance
Presence of taxa with a preference for moderately fast flowing water	0	2	95	Number of taxa with a preference for Moderately fast flowing water were present
Abundance and/or frequency of occurrence of taxa with a preference for moderately fast flowing water	0.5	2	95	There w ere recorded in good abundance
Presence of taxa with a preference for slow flowing water	0	3	70	Number of taxa with a preference for Slow flowing water were present
Abundance and/or frequency of occurrence of taxa with a preference for slow flowing water	0	3	70	They were in large abundance
Presence of taxa with a preference for standing water	1.5	4	65	Relatively fewer taxa were recorded as the site lacks more standing water
Abundance and/or frequency of occurrence of taxa with a preference for standing water	2	4	65	Their abundance was relatively low er
Overall % change in flow dependance of assemblage			11	
Velocity Preference Scores: GENERIC GUIDELINES FOR SCORING (0-5) 0–No change from reference 1 = Small change from reference 2=Moderate changefrom reference 3=Large change from reference 4=Serious change from reference 5=Extreme change from reference (completely dominant or absent)	Very Fas Moderat Slow flo Standing	ving water 0. g water <0.1 r	er >0.6 m/s; ng water 0.3-0.6 m/s; 1-0.3 m/s; n/s	
Ranking of metrics: Rank order in terms of which metric (if it changed from worst to best) would best indicate good integrity in terms of velocity categories. Do not rank metrics that are not relevant (leave them blank)	how big	the impact of	o to rank 1, then say f each of the others is ective of the rating).	

HABITAT MODIFICATION METRICS. WITH REFERENCE TO INVERTEBRATE HABITAT PREFERENCES, WHAT ARE THE CHANGES TO THE FOLLOWING OBSERVED OR EXPECTED TO BE?	-	RATING RANKING OF	METRICS	%WEIGHT	COMMENTS
Has the occurrence of invertebrates with a preference for bedrock/boulders changed relative to expected?	0	3	;	80	More taxa w ere recorded from bedrock/boulders
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for bedrock/boulders changed?	0.5	3		80	Most of them w ere in good abunndance
Has the occurrence of invertebrates with a preference for loose cobbles changed relative to expected?	0.5	1		100	Almost all the expected inverts were recorded
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for loose cobbles changed?	0	1		100	Recorded abundance w as expected
Has the occurrence of invertebrates with a preference for vegetation changed relative to expected?	0.5	2	9	95	A number of taxa with preference for Veg. were recorded
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for vegetation changed?	0	2		95	Abundance was not different from expected
Has the occurrence of invertebrates with a preference for sand, gravel or mud changed relative to expected?	1	5		40	very few taxa with preference for sand and mud were missing
Has the abundance of any of the taxa with a preference for sand, gravel or mud changed relative to expected?	1	5		40	Abundance was very comparable with the expected one, how ever some taxa were in lesser abundance
Has the occurrence of invertebrates with a preference for the water column or water surface changed relative to expected?	0	4	·	70	Very large number of taxa were recorded from water column
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for the water column/water surface changed?	0	4		7	The abundance w as relatively natural
Overall % change in flow dependanceof assemblage				6	

WATER QUALITY METRICS. WITH REFERENCE TO WATER QUALITY REQUIREMENTS, WHAT ARE THE CHANGES TO THE FOLLOWING OBSERVED OR EXPECTED TO BE?	RATING	RANKING OF METRICS	% WEIGHT	COMMENTS
Has the number of taxa with a high requirement for unmodified				
physico-chemical conditions changed?	0.5	1	100	Most of taxa w ere present
Has the abundance and/or frequency of occurrence of the taxa				
with a high requirement for unmodified physico-chemical	0	1	100	No major change in abundance
Has the number of taxa with a moderate requirement for				
unmodified physico-chemical conditions changed?	0.5	1	100	Most of taxa w ere present
Hasthe abundance and/or fequency of occurrence of the taxa				
with a moderate requirement for modified physico-chemical	1	1	100	very slight change in abundance
Has the number of taxa with a low requirement for unmodified				
physico-chemical conditions changed?	0.5	1	100	Most of taxa w ere present
Has the abundance and/or frequency of occurrence of the taxa				
with a low requirement for unmodified physico-chemical	0	1	100	No measurable change in abundance
Has the number of taxa with a very low requirement for				
unmodified physico-chemical conditions changed?	0.5	2	95	May be very small change w hich may be a result os seasonality
Has the abundance and/or frequency of occurrence of the taxa				
with a very low requirement for unmodified physico-chemical	0	2	95	No measurable change in abundance
How does the total SASS score differ from expected?	0	2	95	Was higher than expected
How does the total ASPT score differ from expected?	0	1	100	Was comparable to the expected
Overall change to indicators of modified water quality			6	

WHAT IS THE EXTENT OF THE FOLLOWING	RATINGS		COMMENTS	
Weirs and causeways	0.00	No Weirs	s closer to the	
Impoundments	0.00	No impo	undments obs	
Changes in seasonality	1.00	Fewer ta	xa were missi	
Based on observed and derived data, with reference to migration and seasonality, how did the following change?	RATING	RANKING OF METRICS	% Weight	COMMENTS
Impact on distribution of migratory taxa	0	3	20	Inverts can move freely along the river stretch
Impact on abundance and/or frequency of occurrence of migratory taxa Impact on occurrence of taxa	0	3	20	No detected impact on abundance
with seasonal distribution	1	1	100	Few taxa were not present although expected during other seasons
Impact on abundance and/or frequency of occurrence of taxa with seasonal distribution	1	2	95	Some taxa were in very low abundance as they were in emerging stage during sampling
Overall % change in flow dependance of assemblage			17	

Which of these measures will best indicate the response of invertebrates (<i>in this system at this site</i>)												
	INVERTEBRATE EC: BASED ON WEIGHTS OF METRIC GROUPS											
INVERTEBRATE EC METRIC GROUP		METRIC GROUP CALCULATED SCORE	CALCULATED WEIGHT	WEIGHTED SCORE OF GROUP	RANK OF METRIC GROUP	%WEIGHT FOR METRIC GROUP	COMMENTS					
FLOW MODIFICATION	FΜ	88.6	0.270	23.9558	1	100	Flow is very important for Inverts survival					
HABITAT	н	93.8	0.270				Habitats are important to support large number of taxa					
WATER QUALITY	WQ	94.0	0.243	22.855	2	90	Good water quality is essential to inverts					
CONNECTIVITY & SEASONALITY	CS	83.4	0.216	18.0334	3	80	Some taxa are only active during a specific season					
						370						
INVERTEBRATE EC				90.2082								
INVERTEBRATE EC CATEGORY				Α								
>89=A; 80-89=B; 60-79=C; 40-59=D; 20-39=E; <20=F												

Addendum 9 Kromme River: MIRAI Model

FLOW MODIFICATION METRICS. WITH REFERENCE TO VELOCITY PREFERENCES, WHAT ARE THE CHANGES TO THE FOLLOWING OBSERVED OR EXPECTED TO BE?	RATING	RANKING OF METRICS	% Weight	COMMENTS
Presence of taxa with a preference for very fast flowing water	1	1	100	Some taxa with a preference for Very fast flowing water were absent, they are very important in determining the present EC
Abundance and/or frequency of occurrence of taxa with a preference for very fast flowing water	1	1	100	Most taxa were recorded in relatively lower abundance
Presence of taxa with a preference for moderately fast flowing water	1	2	90	Number of taxa with a preference for Moderately fast flowing water were present
Abundance and/or frequency of occurrence of taxa with a preference for moderately fast flowing water	2	2	90	They were recorded in good abundance
Presence of taxa with a preference for slow flowing water	2	3	70	number of taxa with a preference for Slow nowing water were
Abundance and/or frequency of occurrence of taxa with a preference for slow flowing water	1.5	3	70	They were in low abundance
Presence of taxa with a preference for standing water	1.5	4	60	Relatively few er taxa w ere recorded
Abundance and/or frequency of occurrence of taxa with a preference for standing water	1	4	60	Abundance was lesser than expected
Overall % change in flow dependance of assemblage			27	

HABITAT MODIFICATION METRICS. WITH REFERENCE TO INVERTEBRATE HABITAT PREFERENCES, WHAT ARE THE CHANGES TO THE FOLLOWING OBSERVED OR EXPECTED TO BE?		RATING RANKING OF	METRICS	%WEIGHT	COMMENTS
Has the occurrence of invertebrates with a preference for bedrock/boulders changed relative to expected?	1	3	3	70	More taxa w ere recorded from bedrock/boulders
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for bedrock/boulders changed?	1	3	3	70	Most of the taxa with a preference of boulders were in relatively low er abundance
Has the occurrence of invertebrates with a preference for loose cobbles changed relative to expected?	0.5	1	I	100	A number of expected inverts were recorded
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for loose cobbles changed?	1	1	I	100	The recorded abundance was slightly low er
Has the occurrence of invertebrates with a preference for vegetation changed relative to expected?	0	2	2	90	Vegetation in this site supported very high number of sensitive taxa
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for vegetation changed?	1.5	2	2	90	Abundance was relatively lower in vegetation
Has the occurrence of invertebrates with a preference for sand, gravel or mud changed relative to expected?	1	5	5	40	Very few taxa with preference for sand and mud were missing
Has the abundance of any of the taxa with a preference for sand, gravel or mud changed relative to expected?	1	5	5	40	Abundance was very comparable with the expected one, how ever some taxa were in lesser abundance
Has the occurrence of invertebrates with a preference for the water column or water surface changed relative to expected?	0	4	1	60	Very large number of taxa were recorded from the water surface
Has the abundance and/or frequency of occurrence of any of the taxa with a preference for the water column/water surface changed?	0.5	4	1	60	The abundance w as relatively natural, how ever Gyrinidae w as not recorded in large abundace
Overall % change in flow dependanceof assemblage		_		15	
Habitat Preference Scores: GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate changefrom reference 3=Large change from reference 4=Serious change from reference 5=Extreme change from reference (completely dominant or absent)					
Ranking of metrics: Rank order in terms of which metric (if it changed from worst to best) would best indicate good integrity in terms of habitat types. Do not rank metrics that are not relevant (leave them blank)	%Weight : Give 100 to rank 1, then say how big the impact each of the others as a % of that (irrespective of the rating).		ay act of ers is		

WATER QUALITY METRICS. WITH REFERENCE TO WATER QUALITY REQUIREMENTS, WHAT ARE THE CHANGES TO THE FOLLOWING OBSERVED OR EXPECTED TO BE?	RATING	RANKING OF METRICS	% WEIGHT	COMMENTS
Has the number of taxa with a high requirement for unmodified physico-chemical conditions changed?	1	1	100	Most of taxa were present
Has the abundance and/or frequency of occurrence of the taxa			100	
with a high requirement for unmodified physico-chemical	2	1	100	Significant change in abundance
Has the number of taxa with a moderate requirement for				
unmodified physico-chemical conditions changed?	1	1	100	Most of taxa w ere present
Hasthe abundance and/or fequency of occurrence of the taxa				
with a moderate requirement for modified physico-chemical	2	1	100	Vissible change in abundance
Has the number of taxa with a low requirement for unmodified				
physico-chemical conditions changed?	0.5	1	100	Most of taxa w ere present
Has the abundance and/or frequency of occurrence of the taxa				
with a low requirement for unmodified physico-chemical	1	1	100	vissible change in abundance
Has the number of taxa with a very low requirement for				
unmodified physico-chemical conditions changed?	0	2	95	No vissible change in occurance
Has the abundance and/or frequency of occurrence of the taxa		-		
with a very low requirement for unmodified physico-chemical	0.5	2	95	No vissible change in abundance
How does the total SASS score differ from expected?	0	2	95	Was comparable to the expected
How does the total ASPT score differ from expected?	1	1	100	Very small change from the expected ASPT score
Overall change to indicators of modified water quality			18	
Water Qaulity delineations (Based on SASS5 weights) High Water Quality Preference: (SASS weights 12-15)	SASS SC	ores: ES FOR SCO	BING (%	
Moderate Water Quality Preference: (SASS weights 7-11)	of refere			
Low Water Quality Preference: (SASS weights 4-6)	>90% = 0	,		
Very low Water Quality Preference: (SASS weights 1-3)	80-90% =	1		
	60-80% :	= 2		
	40.000/	•		
	40-60% :	= 3		
	20-40% :	= 4		
Water Quality Preference Scores:	20-40% = ASPT Va	= 4 ues:		
GENERIC GUIDELINES FOR SCORING (0-5)	20-40% ASPT Val GUIDELIN	= 4 ues: ES FOR SCO	DRING (%	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference	20-40% ASPT Val GUIDELIN of referen	= 4 ues: ES FOR SCO nce)	DRING (%	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference	20-40% = ASPT Val GUIDELIN of referen >95% = 0	= 4 ues: ES FOR SCO nce)	DRING (%	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate change from reference	20-40% = ASPT Val GUIDELIN of referen >95% = 0 90-95% =	= 4 ues: ES FOR SCO nce) = 1	DRING (%	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate change from reference 3=Large change from reference	20-40% = ASPT Val GUIDELIN of referen >95% = 0 90-95% = 85-90% =	= 4 ues: ES FOR SCO nce) = 1 = 2	DRING (%	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate change from reference 3=Large change from reference 4=Serious change from reference	20-40% = ASPT Val GUIDELIN of referen >95% = 0 90-95% = 85-90% = 80-85% =	= 4 ues: ES FOR SCOnce) = 1 = 2 = 3	DRING (%	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate change from reference 3=Large change from reference 4=Serious change from reference 5=Extreme change from reference (completely dominant or absent)	20-40% = ASPT Val GUIDELIN of referen >95% = 0 90-95% = 85-90% = 80-85% = 75-80% =	= 4 ues: ES FOR SCO nce) = 1 = 2 = 3 = 4		
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate change from reference 3=Large change from reference 4=Serious change from reference 5=Extreme change from reference (completely dominant or absent) Ranking of metrics: Rank order in terms of which metric (if it	20-40% = ASPT Val GUIDELIN of referent >95% = 0 90-95% = 80-85% = 75-80% = % Weight	= 4 ues: ES FOR SCO nce) = 1 = 2 = 3 = 4 : Give 100%	to rank 1,	
GENERIC GUIDELINES FOR SCORING (0-5) 0=No change from reference 1= Small change from reference 2=Moderate change from reference 3=Large change from reference 4=Serious change from reference 5=Extreme change from reference (completely dominant or absent) Ranking of metrics: Rank order in terms of which metric (if it changed from worst to best) would best indicate good integrity in	20-40% = ASPT Val GUIDELIN of referent >95% = 0 90-95% = 85-90% = 80-85% = 75-80% = % Weight then say	= 4 ues: ES FOR SCO nce) = 1 = 2 = 3 = 4	to rank 1, impact of	

WHAT IS THE EXTENT OF THE FOLLOWING	RATINGS		COMMENTS	
Weirs and causeways	0.00	A bridge	is located dov	
Impoundments	0.00	No impo	undments obs	
Changes in seasonality	2.00	A numbe	r of seasonal	
Based on observed and derived data, with reference to migration and seasonality, how did the following change?	RATING	RANKING OF METRICS	% Weight	COMMENTS
Impact on distribution of migratory taxa	0	3	80	Inverts can easily move along the river
Impact on abundance and/or frequency of occurrence of migratory taxa	0	3	80	No detected impact on abundance
Impact on occurrence of taxa with seasonal distribution	2	1	100	Few taxa were not present although expected during other seasons
Impact on abundance and/or frequency of occurrence of taxa with seasonal distribution	2	2	95	Some taxa were in very low abundance as they were in emerging stage during sampling
Overall % change in flow dependance of assemblage			22	

OUP	METRIC GROUP CALCULATED SCORE	CALCULATED WEIGHT	WEIGHTED SCORE OF GROUP	RANK OF METRIC GROUP	%WEIGHT FOR METRIC GROUP	
FM	73.0	0.263	19.2023	1	100	
н	85.1	0.263	22.405	1	100	
WQ	81.8	0.250	20.4442	2	95	
CS	78.0	0.224	17.4537	3	85	
					380	
			79.5051			
			B/C			
	FM H WQ	DUP GROUP CALCULATED SCORE FM 73.0 H 85.1 WQ 81.8	GROUP CALCULATED SCORE CALCULATED WEIGHT FM 73.0 0.263 H 85.1 0.263 WQ 81.8 0.250	GROUP CALCULATED SCORE CALCULATED WEIGHT WEIGHTED SCORE OF GROUP FM 73.0 0.263 19.2023 H 85.1 0.263 22.405 WQ 81.8 0.250 20.4442 CS 78.0 0.224 17.4537 79.5051 20.5051	OUP GROUP CALCULATED SCORE CALCULATED WEIGHT WEIGHTED SCORE OF GROUP OF METRIC GROUP FM 73.0 0.263 19.2023 1 H 85.1 0.263 22.405 1 WQ 81.8 0.250 20.4442 2 CS 78.0 0.224 17.4537 3	

>89=A; 80-89=B; 60-79=C; 40-59=D; 20-39=E; <20=F